
BeagleBoard Docs
Release 0.0.9

BeagleBoard.org Foundation
Sep 28, 2022

Table of contents

1 Introduction 1
1.1 Support . 1

1.1.1 Getting started . 1
1.1.2 Getting support . 6
1.1.3 Understanding Your Beagle . 7
1.1.4 Working with Cape Add-on Boards . 7

1.2 Bone101 . 7
1.2.1 QWIIC, STEMMA and Grove Add-ons in Linux . 8

1.3 Contribution . 10
1.3.1 Code of Conduct . 10
1.3.2 Frequently Asked Questions . 11
1.3.3 What should I know before I get started? . 11
1.3.4 How can I contribute? . 13
1.3.5 Style and usage guidelines . 13

2 Boards 21
2.1 BeagleBone (all) . 21
2.2 PocketBeagle . 22

2.2.1 Introduction . 22
2.2.2 Change History . 23
2.2.3 Connecting Up PocketBeagle . 24
2.2.4 PocketBeagle Overview . 34
2.2.5 PocketBeagle High Level Specification . 36
2.2.6 Detailed Hardware Design . 40
2.2.7 Connectors . 49
2.2.8 PocketBeagle Cape Support . 57
2.2.9 PocketBeagle Mechanical . 58
2.2.10 Additional Pictures . 58
2.2.11 Support Information . 58

2.3 Capes . 60
2.3.1 BeagleBone cape interface spec . 60
2.3.2 BeagleBoard.org BeagleBone Relay Cape . 74

2.4 BeagleConnect . 75
2.4.1 BeagleConnect Technology . 76
2.4.2 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom 79
2.4.3 BeagleConnect™ Story . 94
2.4.4 BeagleConnect Experience . 94
2.4.5 BeagleConnect Boards . 95

2.5 BeagleBoard (all) . 105

3 Projects 107
3.1 simpPRU . 107

3.1.1 simpPRU Basics . 107
3.1.2 Build from source . 108
3.1.3 Install . 108
3.1.4 Language Syntax . 109
3.1.5 IO Functions . 118

i

3.1.6 Usage(simppru) . 123
3.1.7 Usage(simppru-console) . 124
3.1.8 simpPRU Examples . 127

3.2 BB-Config . 141
3.2.1 BB-Config Detail . 141
3.2.2 Build from Source . 143
3.2.3 Features . 143
3.2.4 Version . 153

4 Books 155
4.1 BeagleBone Cookbook . 155

4.1.1 Basics . 155
4.1.2 Sensors . 165
4.1.3 Displays and Other Outputs . 193
4.1.4 Motors . 206
4.1.5 Beyond the Basics . 220
4.1.6 Internet of Things . 246
4.1.7 The Kernel . 283
4.1.8 Real-Time I/O . 296
4.1.9 Capes . 309
4.1.10 Parts and Suppliers . 337

4.2 PRU Cookbook . 340
4.2.1 Case Studies - Introduction . 340
4.2.2 Getting Started . 373
4.2.3 Running a Program; Configuring Pins . 382
4.2.4 Debugging and Benchmarking . 392
4.2.5 Building Blocks - Applications . 409
4.2.6 Accessing More I/O . 481
4.2.7 More Performance . 488
4.2.8 Moving to the BeagleBone AI . 499
4.2.9 PRU Projects . 504

ii

Chapter 1

Introduction

Welcome to the BeagleBoard documentation project. If you are looking for help with your Beagle open-
hardware development platform, you’ve found the right place!

Please check out our Support page` to find out how to get started, resolve issues, and engage the devel-
oper community.

Don’t forget that this is an open-source project! Your contributions are welcome. Learn about how to
contribute to the BeagleBoard documentation project and any of the many open-source Beagle projects
on-going on our Contribution page.

1.1 Support

Note: #TODO# all the links need updating and content moved into this repo, especially bone101.

1.1.1 Getting started

The starting experience for all Beagles has been made to be as consistent as is possible. For any of the
Beagle Linux-based open hardware computers, visit Getting Started Guide.

Getting Started Guide

Beagles are tiny computers ideal for learning and prototyping with electronics. Read the step-by-step
getting started tutorial below to begin developing with your Beagle in minutes.

Update board with latest software This step may or may not be necessary, depending on how old a
software image you already have, but executing this step, the longest step, will ensure the rest will go as
smooth as possible.

Download the latest software image Download the lastest Debian image from
beagleboard.org/latest-images. The “IoT” images provide more free disk space if you don’t need
to use a graphical user interface (GUI).

Note: Due to sizing necessities, this download may take 30 minutes or more.

1

https://beagleboard.org/latest-images

BeagleBoard Docs, Release 0.0.9

The Debian distribution is provied for the boards. The file you download will have an .img.xz extension.
This is a compressed sector-by-sector image of the SD card.

Install SD card programming utility Download and install balenaEtcher.

2 Chapter 1. Introduction

https://www.balena.io/etcher/

BeagleBoard Docs, Release 0.0.9

Connect SD card to your computer Use your computer’s SD slot or a USB adapter to connect the SD
card to your computer.

Write the image to your SD card Use Etcher to write the image to your SD card. Etcher will transpar-
ently decompress the image on-the-fly before writing it to the SD card.

Eject the SD card Eject the newly programmed SD card.

Boot your board off of the SD card Insert SD card into your (powered-down) board, hold down the
USER/BOOT button and apply power, either by the USB cable or 5V adapter.

If using an original BeagleBone or PocketBeagle, you are done.

Note: If using BeagleBone Black, BeagleBone Blue, BeagleBone AI, BeagleBone AI-64 or other board
with on-board eMMC flash and you desire to write the image to your on-board eMMC, you’ll need

1.1. Support 3

BeagleBoard Docs, Release 0.0.9

to follow the instructions at http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC.
When the flashing is complete, all 4 USRx LEDs will be steady on or off. The latest Debian flasher images
automatically power down the board upon completion. This can take up to 45 minutes. Power-down
your board, remove the SD card and apply power again to finish.

Start your Beagle If any step fails, it is recommended to update to the latest software image using the
instructions above.

Power and boot Most Beagles can be powered via a USB cable, providing a convenient way to provide
both power to your Beagle and connectivity to your computer. Be sure the cable is of good quality and
your source can provide enough power.

Alternatively, your Beagle may have a barrel jack.

Note: Use only a 5V center positive adapter for all Beagles except BeagleBone Blue and BeagleBoard-
X15 (12V).

If you are using your Beagle with an SD (microSD) card, make sure it is inserted ahead of providing
power. Most Beagles include programmed on-board flash and therefore do not require an SD card to be
inserted.

You’ll see the power (PWR or ON) LED lit steadily. Within a minute or so, you should see the other
LEDs blinking in their default configurations. Consult the Quick Start Guide (QSG) or System Reference
Manual (SRM) for your board to locate these LEDs.

• USR0 is typically configured at boot to blink in a heartbeat pattern.

• USR1 is typically configured at boot to light during SD (microSD) card accesses.

• USR2 is typically configured at boot to light during CPU activity.

• USR3 is typically configured at boot to light during eMMC accesses.

• USR4/WIFI is typically configured at boot to light with WiFi (client) network association (Beagle-
Bone Blue and BeagleBone AI only).

Enable a network connection If connected via USB, a network adapter should show up on your
computer. Your Beagle should be running a DHCP server that will provide your computer with an IP
address of either 192.168.7.1 or 192.168.6.1, depending on the type of USB network adapter supported
by your computer’s operating system. Your Beagle will reserve 192.168.7.2 or 192.168.6.2 for itself.

If your Beagle includes WiFi, an access point called “BeagleBone-XXXX” where “XXXX” varies be-
tween boards. The access point password defaults to “BeagleBone”. Your Beagle should be running
a DHCP server that will provide your computer with an IP address in the 192.168.8.x range and reserve
192.168.8.1 for itself.

If your Beagle is connected to your local area network (LAN) via either Ethernet or WiFi, it will utilize
mDNS to broadcast itself to your computer. If your computer supports mDNS, you should see your Beagle
as beaglebone.local. Non-BeagleBone boards will utilize alternate names. Multiple BeagleBone boards
on the same network will add a suffix such as beaglebone-2.local.

Browse to your Beagle A web server with an IDE should be running on your Beagle. Point your
browser to it to begin development.

Note: Use either Firefox or Chrome (Internet Explorer will NOT work), browse to the web server
running on your board. It will load a presentation showing you the capabilities of the board. Use the

4 Chapter 1. Introduction

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC
https://beagleboard.org/latest-images
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/Multicast_DNS
https://www.mozilla.org/firefox
https://www.google.com/chrome

BeagleBoard Docs, Release 0.0.9

arrow keys on your keyboard to navigate the presentation.

The below table summarizes the typical addresses.

Link Connection type Operating System(s)
http://192.168.7.2 USB Windows
http://192.168.6.2 USB Mac OS X, Linux
http://192.168.8.1 WiFi all
http://beaglebone.local all mDNS enabled
http://beaglebone-2.local all mDNS enabled

Troubleshooting Do not use Internet Explorer.

Virtual machines are not recommended when using the direct USB connection. It is recommended you
use only network connections to your board if you are using a virtual machine.

When using ‘ssh’ with the provided image, the username is ‘debian’ and the password is ‘temppwd’.

With the latest images, it should no longer be necessary to install drivers for your operating system to
give you network-over-USB access to your Beagle. In case you are running an older image, an older
operating system or need additional drivers for serial access to older boards, links to the old drivers are
below.

Operating sys-
tem

USB Driver Comments

Windows (64-
bit)

64-bit in-
staller

If in doubt, try the 64-bit installer first.

Windows (32-
bit)

32-bit in-
staller

Mac OS X Network Se-
rial

Install both sets of drivers.

Linux mkude-
vrules.sh

Driver installation isn’t required, but you might find a few udev
rules helpful.

Note: For Windows (64-bit):

1. Windows Driver Certification warning may pop up two or three times. Click “Ignore”, “Install” or
“Run”.

2. To check if you’re running 32 or 64-bit Windows see this: support.microsoft.com/kb/827218.

3. On systems without the latest service release, you may get an error (0xc000007b). In that case,
please install the following and retry: https://www.microsoft.com/en-us/download/confirmation.
aspx?id=13523

4. You may need to reboot Windows.

5. These drivers have been tested to work up to Windows 10

Additional FTDI USB to serial/JTAG information and drivers are available from https://www.ftdichip.
com/Drivers/VCP.htm

Additional USB to virtual Ethernet information and drivers are available from https://www.linux-usb.
org/gadget/ and https://joshuawise.com/horndis

Visit https://beagleboard.org/support for additional debugging tips.

1.1. Support 5

http://192.168.7.2
http://192.168.6.2
http://192.168.8.1
http://beaglebone.local
http://beaglebone-2.local
https://beagleboard.org/static/Drivers/Windows/BONE_D64.exe
https://beagleboard.org/static/Drivers/Windows/BONE_D64.exe
https://beagleboard.org/static/Drivers/Windows/BONE_DRV.exe
https://beagleboard.org/static/Drivers/Windows/BONE_DRV.exe
https://beagleboard.org/static/Drivers/MacOSX/FTDI/EnergiaFTDIDrivers2.2.18.pkg
https://beagleboard.org/static/Drivers/MacOSX/FTDI/EnergiaFTDIDrivers2.2.18.pkg
https://beagleboard.org/static/Drivers/Linux/FTDI/mkudevrule.sh
https://beagleboard.org/static/Drivers/Linux/FTDI/mkudevrule.sh
https://support.microsoft.com/kb/827218
https://www.microsoft.com/en-us/download/confirmation.aspx?id=13523
https://www.microsoft.com/en-us/download/confirmation.aspx?id=13523
https://www.ftdichip.com/Drivers/VCP.htm
https://www.ftdichip.com/Drivers/VCP.htm
https://www.linux-usb.org/gadget/
https://www.linux-usb.org/gadget/
https://joshuawise.com/horndis
https://beagleboard.org/support

BeagleBoard Docs, Release 0.0.9

Hardware documentation Be sure to check check the latest hardware documentation for your board
at https://docs.beagleboard.org.

Detailed design materials for various boards can be found at https://git.beagleboard.org/explore/
projects/topics/boards.

Books For a complete list of books on BeagleBone, see beagleboard.org/books.

Bad to the Bone

Perfect for high-school seniors or freshman univerisity level text, consider using “Bad to the Bone”

BeagleBone Cookbook

A lighter treatment suitable for a bit broader audience without the backgrounders on programming and
electronics, consider “BeagleBone Cookbook”

Exploring BeagleBone and Embedded Linux Primer

To take things to the next level of detail, consider “Exploring BeagleBone” which can be considered the
missing software manual and utilize “Embedded Linux Primer” as a companion textbook to provide a
strong base on embedded Linux suitable for working with any hardware that will run Linux.

1.1.2 Getting support

BeagleBoard.org products and open hardware designs are supported via the on-line community re-
sources. We are very confident in our community’s ability to provide useful answers in a timely manner.
If you don’t get a productive response within 24 hours, please escalate issues to Jason Kridner (contact
info available on the About Page). In case it is needed, Jason will help escalate issues to suppliers, man-
ufacturers or others. Be sure to provide a link to your questions on the community forums as answers
will be provided there.

Be sure to ask smart questions that provide the following:

• What are you trying to accomplish?

• What did you find when researching how to accomplish it?

• What are the detailed results of what you tried?

• How did these results differ from what you expected?

• What would you consider to be a success?

Important: Remember that community developers are volunteering their expertise. If you want paid
support, there are Consulting and other resources options for that. Respect developers time and expertise
and they might be happy to share with you.

Diagnostic tools

Best to be prepared with good diagnostic information to aide with support.

Note: #TODO#: Need a reference to how to run beagle-version.

• Output of beagle-version script needed for support requests

• Beagle Tester source

6 Chapter 1. Introduction

https://docs.beagleboard.org
https://git.beagleboard.org/explore/projects/topics/boards
https://git.beagleboard.org/explore/projects/topics/boards
https://beagleboard.org/books
https://bbb.io/bad-to-the-bone
https://bbb.io/cookbook
https://bbb.io/ebb
https://bbb.io/elp
https://www.oshwa.org/definition/
https://beagleboard.org/about
https://forum.beagleboard.org
http://www.catb.org/~esr/faqs/smart-questions.html
https://git.beagleboard.org/jkridner/beagle-tester

BeagleBoard Docs, Release 0.0.9

Community resources

Please execute the board diagnostics, review the hardware documentation, and consult the mailing list
and IRC channel for support. BeagleBoard.org is a “community” project with free support only given to
those who are willing to discussing their issues openly for the benefit of the entire community.

• Frequently Asked Questions

• Mailing List

• Live Chat

Consulting and other resources

Need timely response or contract resources because you are building a product?

• Resources

Repairs

Repairs and replacements only provided on unmodified boards purchased via an authorized distributor
within the first 90 days. All repaired board will have their flash reset to factory contents. For repairs and
replacements, please contact ‘support’ at BeagleBoard.org using the RMA form:

• RMA request

1.1.3 Understanding Your Beagle

• BeagleBone Introduction

• Hardware

• Software

• Books

– Exploring BeagleBone

– BeagleBone Cookbook

– Bad to the Bone

1.1.4 Working with Cape Add-on Boards

• Capes

• BeagleBone cape interface spec

1.2 Bone101

Note: This page is under construction. Most of the information here is drastically out of date.

Most of the useful information has moved to BeagleBone Cookbook , but this can be to be a place for nice
introductory articles on using Bealges and Linux from a different approach.

Articles under construction:

• QWIIC, STEMMA and Grove Add-ons in Linux

1.2. Bone101 7

https://forum.beagleboard.org/c/faq
https://forum.beagleboard.org
https://beagleboard.org/chat
https://beagleboard.org/resources
https://beagleboard.org/support/rma
https://beagleboard.org/Support/bone101
https://beagleboard.org/Support/Hardware+Support
https://beagleboard.org/Support/Software+Support
https://beagleboard.org/books
https://beagleboard.org/ebb
https://beagleboard.org/cookbook
https://beagleboard.org/bad-to-the-bone

BeagleBoard Docs, Release 0.0.9

Also, I don’t want to completely lose the useful documentation we had at:

• https://beagleboard.github.io/bone101/Support/bone101/

1.2.1 QWIIC, STEMMA and Grove Add-ons in Linux

Note: This article is under construction.

I’m creating a place for me to start taking notes on how to load drivers for I2C devices (mostly), but also
other Grove add-ons.

For simplicity sake, I’ll use these definitions

• add-on: the QWIIC, STEMMA (QT) or Grove add-on separate from your Linux computer

• device: the “smart” IC on the add-on to which we will interface from your Linux computer

• board: the Linux single board computer with the embedded interface controller you are using

• module: a kernel module that might contain the driver

Using I2C with Linux drivers

Linux has a ton of drivers for I2C devices. We just need a few parameters to load them.

Using a Linux I2C kernel driver module can be super simple, like in the below example for monitoring a
digital light sensor.

cd /sys/bus/i2c/devices/i2c-1
echo tsl2561 0x29 > new_device
watch -n0 cat "1-0029/iio:device0/in_illuminance0_input"

Once you issue this, your screen continuously refresh with luminance values from the add-on sensor.

In the above example, /sys/bus/i2c/devices/i2c-1 comes from which I2C controller we are using on the
board and there are specific pins on the board where you can access it.

tsl2561 is the name of the driver we want to load and 0x29 is the address of the device on the I2C bus.
If you want to know about I2C device addresses, the Sparkfun I2C tutorial isn’t a bad place to start. The
new_device virtual file is documented in the Linux kernel documentation on instantiating I2C devices.

On the last line, watch is a program that will repeatedly run the command that follows.
The -n0 sets the refresh rate. The program cat will share the contents of the file 1-
0029/iio:device0/in_illuminance0_input.

1-0029/iio:device0/in_illuminance0_input is not a file on a disk, but output directly from the driver. The
1 in 1-0029 represents the I2C controller index. The 0029 represents the device I2C address. Most small
sensor and actuator drivers will show up as Industrial I/O (IIO) devices. New IIO devices get increment-
ing indexes. In this case, iio:device0 is the first IIO device driver loaded. Finally, in_illuminance0_input
comes from the SYSFS application binary interface for this type of device, a light sensor. The Linux ker-
nel ABI documentation for sysfs-bus-iio provides the definition of available data often provided by light
sensor drivers.

What: /sys/.../iio:deviceX/in_illuminance_input
What: /sys/.../iio:deviceX/in_illuminance_raw
What: /sys/.../iio:deviceX/in_illuminanceY_input
What: /sys/.../iio:deviceX/in_illuminanceY_raw
What: /sys/.../iio:deviceX/in_illuminanceY_mean_raw
What: /sys/.../iio:deviceX/in_illuminance_ir_raw
What: /sys/.../iio:deviceX/in_illuminance_clear_raw

(continues on next page)

8 Chapter 1. Introduction

https://beagleboard.github.io/bone101/Support/bone101/
https://learn.sparkfun.com/tutorials/i2c
https://www.kernel.org/doc/html/v5.19/i2c/instantiating-devices.html
https://manpages.debian.org/bullseye/procps/watch.1.en.html
https://manpages.debian.org/bullseye/coreutils/cat.1.en.html
https://www.kernel.org/doc/html/v5.19/driver-api/iio/index.html
https://www.kernel.org/doc/html/v5.19/filesystems/sysfs.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

KernelVersion: 3.4
Contact: linux-iio@vger.kernel.org
Description:

Illuminance measurement, units after application of scale
and offset are lux.

Read further to discover how to find these bits of magic text used above.

The generic steps are fairly simple:

1. Identify the name and address used to load the appropriate driver for your add-on

2. Ensure the driver is included in your kernel build

3. Identify the location of the I2C signals on the board and the controller link in Linux

4. Ensure the board pinmux is set properly to expose the I2C peripheral

5. Ensure the board to add-on connection is good

6. Issue the Linux command to load the driver

7. Identify and utilize the interface provided by the driver

Driver name One resource that is very helpful is the list that Vaishnav put together for supporting
Mikroelektronika Click add-ons. His list of Click add-ons with driver information can help a lot with
matching a device to the driver name, device address, and kernel configuration setting.

Note: Documentation for your particular add-on might indicate a different device address than is
configured on Click add-ons.

I’m not aware of a trivial way of discovering the mapping that Vaishnav created outside of looking at the
kernel sources. As an example, let’s look at the Grove Digital Light Sensor add-on which is documented
to utilize a TSL2561.

Searching through the kernel sources, we can find the driver code at drivers/iio/light/tsl2563.c. There is
a list of driver names in a i2c_device_id table:

static const struct i2c_device_id tsl2563_id[] = {
{ "tsl2560", 0 },
{ "tsl2561", 1 },
{ "tsl2562", 2 },
{ "tsl2563", 3 },
{}

};

Important: Don’t miss that the driver, tsl2561 , is actually part of a a superset driver, tsl2563 . This can
make things a bit trickier to find, so you have to look within the text of the driver source, not just the
filenames.

Kernel configuration

I2C signals and controller

Pinmuxing

1.2. Bone101 9

https://git.beagleboard.org/jkridner/manifesto/-/blob/main/click_info.csv
https://wiki.seeedstudio.com/Grove-Digital_Light_Sensor/
https://elixir.bootlin.com/linux/v5.19.5/source/drivers/iio/light/tsl2563.c#L862

BeagleBoard Docs, Release 0.0.9

Wiring

Load driver

Interface

Finding I2C add-on modules
Note: There are some great resources out there:

• Adafruit list of I2C devices

• Sparkfun list of QWIIC devices

• Adafruit STEMMA QT introduction

Pitfalls Not all I2C devices with drivers in the Linux kernel can be loaded this way. The most common
reason is that the device driver expects an interrupt signal or other GPIO along with the I2C communi-
cation. In these cases, a device tree overlay or driver modification may be necessary.

1.3 Contribution

Note: This section is under developmement right now.

Important: First off, thanks for taking the time to think about contributing!

Note: For donations, see BeagleBoard.org - Donate.

The BeagleBoard.org Foundation maintains source for many open source projects.

Example projects suitable for first contributions:

• BeagleBoard project documentation

• Debian image bug repository

• Debian image builder

These guidelines are mostly suggestions, not hard-set rules. Use your best judgment, and feel free to
propose changes to this document in a pull request.

1.3.1 Code of Conduct

This project and everyone participating are governed by the same code of conduct.

Note: Check out https://forum.beagleboard.org/faq as a starting place for our code of conduct.

By participating, you are expected to uphold this code. Please report unacceptable behavior to contact
one of our administrators or moderators on https://forum.beagleboard.org/about.

10 Chapter 1. Introduction

https://learn.adafruit.com/i2c-addresses/the-list
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt/sparkfun-qwiic
https://beagleboard.org/donate
https://git.beagleboard.org/docs/docs.beagleboard.io
https://git.beagleboard.org/beagleboard/Latest-Images
https://git.beagleboard.org/beagleboard/image-builder
https://forum.beagleboard.org/faq
https://forum.beagleboard.org/about

BeagleBoard Docs, Release 0.0.9

1.3.2 Frequently Asked Questions

Please refer to the technical and contribution frequently asked questions pages before posting any of
your own questions. Please feel encouraged to ask follow-up questions if any of the answers are not
clear enough.

• Frequently asked questions contribution category on the BeagleBoard.org Forum

1.3.3 What should I know before I get started?

The more you know about Linux and contributing to upstream projects, the better, but this knowledge
isn’t strictly required. Simply reading about contributing to Linux and upstream projects can help build
your vocabulary in a meaningful way to help out. Learn about the skills required for Linux contributions
in the Upstream Kernel Contributions section.

The most useful thing to know is how to ask smart questions. Read about this in the Getting support
section. If you ask smart questions on the issue trackers and forum, you’ll be doing a lot to help us
improve the designs and documentation.

Upstream Kernel Contributions

Note: For detailed information on Kernel Developmement checkout the official kernel.org kernel docs.

For a person or company who wishes to submit a change to the Linux kernel, the process can sometimes
be daunting if you’re not familiar with “the system.” This text is a collection of suggestions which can
help you get started and greatly increase the chances of your change being accepted.

Note: This version is an unofficial draft and is subject to change.

Pre-requisites The following are the skills that are needed before you actually start to contribute to
the linux kernel:

• More Git!

• C-Programming

• Cross-arch Development

• Basics of embedded busses (I2C, UART, SPI, etc.)

• Device Drivers in Embedded Systems

• Device Trees

For more guidance, check out the Additional Resources.

More Git! It is highly recommended that you go through Git Usage before starting to read and follow
these guidelines. You will need to have a proper git setup on your computer inorder to effectively follow
these steps.

Creating your first patch When you first enter the world of Linux Kernel development from a back-
ground in contributing over gitlab or github, the terminologies slightly change.

Your Pull Requests (PRs) now become Patches or Patch Series. You no longer just go to some website and
click on a “Create Pull Request” button. Whatever code/changes you want to add will have to be sent as
patches via emails.

1.3. Contribution 11

https://forum.beagleboard.org/c/faq
https://www.kernel.org/doc/html/latest/

BeagleBoard Docs, Release 0.0.9

As an example, let’s consider a commit to add the git section to these docs. I stage these changes first
using git add -p.

diff --git a/contribution/contribute.rst b/contribution/contribute.rst
index def100b..0af08c5 100644
--- a/contribution/contribute.rst
+++ b/contribution/contribute.rst

Then, commit the above changes.

Note: Don’t forget to make your commit message descriptive of the feature you are adding or the work
that you have done in that commit. The commit has to be self explanatory in itself. Link any references
if you have used and paste any logs to prove your code works or if there is a fix.

git commit -vs

[linux-contrib 3bc0821] contribute.rst: Add git section
1 file changed, 27 insertions(+), 1 deletion(-)

Now, let’s say we want to send this new feature to upstream kernel. You then have to create a patch file
using the following command:

git format-patch -1 HEAD

0001-contribute.rst-Add-git-section.patch

This will generate one file that is generally referred to as the patch file. This is what you will now be
sending upstream inorder to get your patch merged. But wait, there are a few more things we need to
setup for sending a patch via e-mail. That is, ofcourse your email!

For configuring your email ID for sending patches refer to this excellent stackoverflow thread, configure
git-send-email.

Finally, after you have configured you email properly, you can send out a patch using:

git send-email 0001-contribute.rst-Add-git-section.patch

replacing ofcourse the above patchfile name with whatever was your own patch. This command will
then ask you To whom should the emails be sent (if anyone)? Here, you have to write the email
address of the list you want to send out the patch to.

git send-email also has command line options like --to and --cc that you can also use to add more
email addresses of whoever you want to keep in CC. Generally it is a good idea to keep yourself in CC.

C-Programming It is highly recommended that you have proficiency in C-Programming, because well
the kernel is mostly written in C! For starters, you can go through Dennis Ritchie’s C Programming book
to understand the language and also solve the excercises given there for getting hands on.

Cross-arch Development While working with the kernel, you’ll most likely not be compiling it on the
machine that you intend to actually boot it on. For example if you are compiling the Kernel for BeageBone
Black it’s probably not ideal for you to actually clone the entire kernel on BBB and then compile it there.
What you’d do instead is pick a much powerful machine like a Desktop PC or laptop and then use cross
arch compilers like the arm-gcc for instance to compile the kernel for your target device.

Basics of embedded busses (I2C, UART, SPI, etc.) In the world of embedded, you often need to
communicate with peripherals over very low level protocols. To name a few, I2C, UART, SPI, etc. are all
serial protocols used to communicate with a variety of devices and peripherals.

It’s recommended to understand atleast the basics of each of the protocol so you know what’s actually
going on when you write for instance an I2C or SPI driver to communicate with let’s say a sensor.

12 Chapter 1. Introduction

https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to
https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to

BeagleBoard Docs, Release 0.0.9

Device Drivers in Embedded Systems I used the term “Drivers” in the above section, but what does it
really mean?

Why “device” drivers?

TODO

Why do we need drivers?

TODO

What do drivers look like?

TODO

Device Trees We just learned about drivers, and it’s time that once you have written a driver in the
kernel, you obviously want it to work! So how do we really tell the kernel which drivers to load? How
do we, at boot time, instruct which devices are present on the board you are booting on?

The kernel does not contain the description of the hardware, it is located in a separate binary: the device
tree blob.

What is a Device Tree?

A device tree is used to describe system hardware. A boot program loads a device tree into a client
program’s memory and passes a pointer to the device tree to the client.

A device tree is a tree data structure with nodes that describe the physical devices in a system.

Additional Resources

1. Device Trees for Dummies PDF

2. What are Device Drivers

3. Submitting your patches upstream

1.3.4 How can I contribute?

The most obvious way to contribute is using the git.beagleboard.org Gitlab server to report bugs, suggest
enhancements and providing merge requests, also called pull requests, the provide fixes to software,
hardware designs and documentation.

Reporting bugs

Suggesting enhancements

Submitting merge requests

1.3.5 Style and usage guidelines

• Git Usage

• Git commit messages

• Documentation Style Guide

1.3. Contribution 13

https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://tldp.org/LDP/tlk/dd/drivers.html
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://git.beagleboard.org

BeagleBoard Docs, Release 0.0.9

Git Usage

Note: For detailed information on Git and Gitlab checkout the official Git and GitLab help page. Also,
for good GitLab workflow you can checkout the Introduction to GitLab Flow (FREE) page.

These are (draft) general guidelines taken from BioPython project to be used for BeagleBoard develop-
ment using git. We’re still working on the finer details.

This document is meant as an outline of the way BeagleBoard projects are developed. It should include
all essential technical information as well as typical procedures and usage scenarios. It should be helpful
for core developers, potential code contributors, testers and everybody interested in BeagleBoard code.

Note: This version is an unofficial draft and is subject to change.

Relevance This page is about actually using git for tracking changes.

If you have found a problem with any BeagleBoard project, and think you know how to fix it, then we
suggest following the simple route of filing a bug and describe your fix. Ideally, you would upload a patch
file showing the differences between the latest version of BeagleBoard project (from our repository) and
your modified version. Working with the command line tools diff and patch is a very useful skill to have,
and is almost a precursor to working with a version control system.

Technicalities This section describes technical introduction into git usage including required software
and integration with GitLab. If you want to start contributing to BeagleBoard, you definitely need to
install git and learn how to obtain a branch of the BeagleBoard project you want to contribute. If you
want to share your changes easily with others, you should also sign up for a BeagleBoard GitLab account
and read the corresponding section of the manual. Finally, if you are engaged in one of the collaborations
on experimental BeagleBoard modules, you should look also into code review and branch merging.

Installing Git You will need to install Git on your computer. Git is available for all major operating
systems. Please use the appropriate installation method as described below.

Linux Git is now packaged in all major Linux distributions, you should find it in your package manager.

Ubuntu/Debian You can install Git from the git-core package. e.g.,

sudo apt-get install git-core

You’ll probably also want to install the following packages: gitk, git-gui, and git-doc

Redhat/Fedora/Mandriva git is also packaged in rpm-based linux distributions.

dnf install gitk

should do the trick for you in any recent fedora/mandriva or derivatives

Mac OS X Download the .dmg disk image from http://code.google.com/p/git-osx-installer/

Windows Download the official installers from Windows installers

14 Chapter 1. Introduction

https://git.beagleboard.org/help#git-and-gitlab
https://git.beagleboard.org/help/topics/gitlab_flow.md
https://biopython.org/wiki/GitUsage
https://git.beagleboard.org/users/sign_up
http://git-scm.com/
http://code.google.com/p/git-osx-installer/
https://git-scm.com/download/win

BeagleBoard Docs, Release 0.0.9

Testing your git installation If your installation succeeded, you should be able to run

$ git --help

in a console window to obtain information on git usage. If this fails, you should refer to git documenta-
tion for troubleshooting.

Creating a GitLab account (Optional) Once you have Git installed on your machine, you can ob-
tain the code and start developing. Since the code is hosted at GitLab, however, you may wish to take
advantage of the site’s offered features by signing up for a GitLab account. While a GitLab account is com-
pletely optional and not required for obtaining the BeagleBoard code or participating in development, a
GitLab account will enable all other BeagleBoard developers to track (and review) your changes to the
code base, and will help you track other developers’ contributions. This fosters a social, collaborative
environment for the BeagleBoard community.

If you don’t already have a GitLab account, you can create one here. Once you have created your account,
upload an SSH public key by clicking on SSH and GPG keys <https://git.beagleboard.org/-/profile/keys>
after logging in. For more information on generating and uploading an SSH public key, see this GitLab
guide.

Working with the source code In order to start working with the BeagleBoard source code, you need
to obtain a local clone of our git repository. In git, this means you will in fact obtain a complete clone
of our git repository along with the full version history. Thanks to compression, this is not much bigger
than a single copy of the tree, but you need to accept a small overhead in terms of disk space.

There are, roughly speaking, two ways of getting the source code tree onto your machine: by simply
“cloning” the repository, or by “forking” the repository on GitLab. They’re not that different, in fact both
will result in a directory on your machine containing a full copy of the repository. However, if you have a
GitLab account, you can make your repository a public branch of the project. If you do so, other people
will be able to easily review your code, make their own branches from it or merge it back to the trunk.

Using branches on GitLab is the preferred way to work on new features for BeagleBoard, so it’s useful
to learn it and use it even if you think your changes are not for immediate inclusion into the main trunk
of BeagleBoard. But even if you decide not to use GitLab, you can always change this later (using the
.git/config file in your branch.) For simplicity, we describe these two possibilities separately.

Cloning BeagleBoard directly Getting a copy of the repository (called “cloning” in Git terminology)
without GitLab account is very simple:

git clone https://git.beagleboard.org/docs/docs.beagleboard.io.git

This command creates a local copy of the entire BeagleBoard repository on your machine (your own
personal copy of the official repository with its complete history). You can now make local changes and
commit them to this local copy (although we advise you to use named branches for this, and keep the
main branch in sync with the official BeagleBoard code).

If you want other people to see your changes, however, you must publish your repository to a public
server yourself (e.g. on GitLab).

Forking BeagleBoard with your GitLab account If you are logged in to GitLab, you can go to the
BeagleBoard Docs repository page:

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main

and click on a button named ‘Fork’. This will create a fork (basically a copy) of the official BeagleBoard
repository, publicly viewable on GitLab, but listed under your personal account. It should be visible
under a URL that looks like this:

https://git.beagleboard.org/yourusername/docs.beagleboard.io/

1.3. Contribution 15

https://git-scm.com/doc
https://git-scm.com/doc
https://git.beagleboard.org/users/sign_up
https://docs.gitlab.com/ee/user/ssh.html
https://docs.gitlab.com/ee/user/ssh.html
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main
https://git.beagleboard.org/yourusername/docs.beagleboard.io/

BeagleBoard Docs, Release 0.0.9

Since your new BeagleBoard repository is publicly visible, it’s considered good practice to change the
description and homepage fields to something meaningful (i.e. different from the ones copied from the
official repository).

If you haven’t done so already, setup an SSH key and upload it to gitlab for authentication.

Now, assuming that you have git installed on your computer, execute the following commands locally on
your machine. This “url” is given on the GitLab page for your repository (if you are logged in):

git clone https://git.beagleboard.org/yourusername/docs.beagleboard.io.git

Where yourusername, not surprisingly, stands for your GitLab username. You have just created a local
copy of the BeagleBoard Docs repository on your machine.

You may want to also link your branch with the official distribution (see below on how to keep your copy
in sync):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

If you haven’t already done so, tell git your name and the email address you are using on GitLab (so that
your commits get matched up to your GitLab account). For example,

git config --global user.name "David Jones" config --global user.email "d.
→˓jones@example.com"

Making changes locally Now you can make changes to your local repository - you can do this offline,
and you can commit your changes as often as you like. In fact, you should commit as often as possible,
because smaller commits are much better to manage and document.

First of all, create a new branch to make some changes in, and switch to it:

git branch demo-branch checkout demo-branch

To check which branch you are on, use:

git branch

Let us assume you’ve made changes to the file beaglebone-black/ch01.rst Try this:

git status

So commit this change you first need to explicitly add this file to your change-set:

git add beaglebone-black/ch01.rst

and now you commit:

git commit -m "added updates X in BeagleBone Black ch01"

Your commits in Git are local, i.e. they affect only your working branch on your computer, and not the
whole BeagleBoard tree or even your fork on GitLab. You don’t need an internet connection to commit,
so you can do it very often.

Pushing changes to GitLab If you are using GitLab, and you are working on a clone of your own
branch, you can very easily make your changes available for others.

Once you think your changes are stable and should be reviewed by others, you can push your changes
back to the GitLab server:

git push origin demo-branch

16 Chapter 1. Introduction

https://docs.gitlab.com/ee/user/ssh.html

BeagleBoard Docs, Release 0.0.9

This will not work if you have cloned directly from the official BeagleBoard branch, since only the core
developers will have write access to the main repository.

Merging upstream changes We recommend that you don’t actually make any changes to the main
branch in your local repository (or your fork onGitLab). Instead, use named branches to do any of your
own work. The advantage of this approach it is the trivial to pull the upstream main (i.e. the official
BeagleBoard branch) to your repository.

Assuming you have issued this command (you only need to do this once):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

Then all you need to do is:

git checkout main pull upstream main

Provided you never commit any change to your local main branch, this should always be a simple fast
forward merge without any conflicts. You can then deal with merging the upstream changes from your
local main branch into your local branches (and you can do that offline).

If you have your repository hosted online (e.g. at GitLab), then push the updated main branch there:

git push origin main

Submitting changes for inclusion in BeagleBoard If you think you changes are worth including in
the main BeagleBoard distribution, then file an (enhancement) bug on our bug tracker, and include a
link to your updated branch (i.e. your branch on GitLab, or another public Git server). You could also
attach a patch to the bug. If the changes are accepted, one of the BeagleBoard developers will have to
check this code into our main repository.

On GitLab itself, you can inform keepers of the main branch of your changes by sending a ‘pull request’
from the main page of your branch. Once the file has been committed to the main branch, you may want
to delete your now redundant bug fix branch on GitLab.

If other things have happened since you began your work, it may require merging when applied to the
official repository’s main branch. In this case we might ask you to help by rebasing your work:

git fetch upstream checkout demo-branch

git rebase upstream/main

Hopefully the only changes between your branch and the official repository’s main branch are trivial and
git will handle everything automatically. If not, you would have to deal with the clashes manually. If this
works, you can update the pull request by replacing the existing (pre-rebase) branch:

git push origin demo-branch --force

If however the rebase does not go smoothly, give up with the following command (and hopefully the
BeagleBoard developers can sort out the rebase or merge for you):

git rebase --abort

Evaluating changes Since git is a fully distributed version control system, anyone can integrate
changes from other people, assuming that they are using branches derived from a common root. This
is especially useful for people working on new features who want to accept contributions from other
people.

This section is going to be of particular interest for the BeagleBoard core developers, or anyone accepting
changes on a branch.

1.3. Contribution 17

BeagleBoard Docs, Release 0.0.9

For example, suppose Jason has some interesting changes on his public repository:

https://git.beagleboard.org/jkridner/docs.beagleboard.io

You must tell git about this by creating a reference to this remote repository:

git remote add jkridner https://git.beagleboard.org/jkridner/BeagleBoard.git

Now we can fetch all of Jason’s public repository with one line:

git fetch jkridner

Now we can run a diff between any of our own branches and any of Jason’s branches. You can list your
own branches with:

git branch

Remember the asterisk shows which branch is currently checked out.

To list the remote branches you have setup:

git branch -r

For example, to show the difference between your main branch and Jason’s main branch:

git diff main jkridner/main

If you are both keeping your main branch in sync with the upstream BeagleBoard repository, then his
main branch won’t be very interesting. Instead, try:

git diff main jkridner/awesomebranch

You might now want to merge in (some) of Jason’s changes to a new branch on your local repository. To
make a copy of the branch (e.g. awesomebranch) in your local repository, type:

git checkout --track jkridner/awesomebranch

If Jason is adding more commits to his remote branch and you want to update your local copy, just do:

git checkout awesomebranch # if you are not already in branch awesomebranch pull

If you later want to remove the reference to this particular branch:

git branch -r -d jkridner/awesomebranch
Deleted remote branch jkridner/awesomebranch (#######)

Or, to delete the references to all of Jason’s branches:

git remote rm jkridner

git branch -r
upstream/main
origin/HEAD
origin/main

Alternatively, from within GitLab you can use the fork-queue to cherry pick commits from other people’s
forked branches. While this defaults to applying the changes to your current branch, you would typically
do this using a new integration branch, then fetch it to your local machine to test everything, before
merging it to your main branch.

18 Chapter 1. Introduction

https://git.beagleboard.org/jkridner/docs.beagleboard.io

BeagleBoard Docs, Release 0.0.9

Committing changes to main branch This section is intended for BeagleBoard developers, who are
allowed to commit changes to the BeagleBoard main “official” branch. It describes the typical activities,
such as merging contributed code changes both from git branches and patch files.

Prerequisites Currently, the main BeagleBoard branch is hosted on GitLab. In order to make changes
to the main branch you need a GitLab account and you need to be added as a collaborator/Maintainer
to the BeagleBoard account. This needs to be done only once. If you have a GitLab account, but you are
not yet a collaborator/Maintainer and you think you should be ask Jason to be added (this is meant for
regular contributors, so in case you have only a single change to make, please consider submitting your
changes through one of developers).

Once you are a collaborator/Maintainer, you can pull BeagleBoard official branch using the private url.
If you want to make a new repository (linked to the main branch), you can just clone it:

git clone https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

It creates a new directory “BeagleBoard” with a local copy of the official branch. It also sets the “origin”
to the GitLab copy This is the recommended way (at least for the beginning) as it minimizes the risk of
accidentally pushing changes to the official GitLab branch.

Alternatively, if you already have a working git repo (containing your branch and your own changes),
you can add a link to the official branch with the git “remote command”. . . but we’ll not cover that here.

In the following sections, we assume you have followed the recommended scenario and you have the
following entries in your .git/config file:

[remote "origin"]
url = https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

[branch "main"]
remote = origin

Committing a patch If you are committing from a patch, it’s also quite easy. First make sure you are
up to date with official branch:

git checkout main pull origin

Then do your changes, i.e. apply the patch:

patch -r someones_cool_feature.diff

If you see that there were some files added to the tree, please add them to git:

git add beaglebone-black/some_new_file

Then make a commit (after adding files):

git commit -a -m "committed a patch from a kind contributor adding feature X"

After your changes are committed, you can push toGitLab:

git push origin

Tagging the official branch If you want to put tag on the current BeagleBoard official branch (this is
usually done to mark a new release), you need to follow these steps:

First make sure you are up to date with official branch:

1.3. Contribution 19

BeagleBoard Docs, Release 0.0.9

git checkout main pull origin

Then add the actual tag:

git tag new_release

And push it to GitLab:

git push --tags origin main

Additional Resources There are a lot of different nice guides to using Git on the web:

• Understanding Git Conceptually

• git ready: git tips

• <http://http://cheat.errtheblog.com/s/git>

• https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html Numpy is
also evaluating git

• https://github.github.com/training-kit/downloads/github-git-cheat-sheet

• https://lab.github.com/courses

• Pro Git

Documentation Style Guide

Note: This is currently a work-in-progress placeholder for some notes on how to style the BeagleBoard
Documenation Project.

See the Zephyr Project Documentation Guidelines as a starting point.

ReStructuredText Cheat Sheet

BeagleBoard docs is mostly writted with ReStructuredText (r)

Headings For each document we divide sections with headings and in ReStructuredText we can use
matching overline and underline to indicate a heading.

1. Document heading (H1) use #.

2. First heading (H2) use *.

3. First heading (H2) use =.

4. First heading (H2) use -.

5. First heading (H2) use ~.

Note: You can include only one (H1) # in a single documentation page.

Make sure the length of your heading symbol is atleast (or more) the lenth of the heading text, for
example:

20 Chapter 1. Introduction

https://www.sbf5.com/~cduan/technical/git/
http://gitready.com/
http://http://cheat.errtheblog.com/s/git
https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html
https://github.github.com/training-kit/downloads/github-git-cheat-sheet
https://lab.github.com/courses
https://git-scm.com/book/en/v2
https://docs.zephyrproject.org/latest/contribute/documentation/guidelines.html

Chapter 2

Boards

BeagleBone is a family of ARM-based, Linux-capable boards intended to be bare-bones, with a balance of
features to enable rapid prototyping and provide a solid reference for building end products.

PocketBeagle boards are ultra-tiny ARM-based, Linux-capable boards intended to be very low cost, with
minimal features suitable for beginners and attractive to professionals looking for a more minimal start-
ing point.

BeagleBone and PocketBeagle Capes are add-on boards for BeagleBone and PocketBeagle boards.

BeagleConnect boards are ARM microcontroller-based, Zephyr-capable boards meant to act as ultra low
cost smart peripherals to their Linux-capable counterparts, with connectivity options that enable almost
endless sensing and actuation expansion.

BeagleBoard is a family of ARM-based, Linux-capable boards where this project started.

2.1 BeagleBone (all)

BeagleBone boards are intended to be bare-bones, with a balance of features to enable rapid prototyping
and provide a solid reference for building end products.

The most popular design is beagleboneblack-home, a staple reference for an open hardware embedded
Linux single board computer.

bbai64-home is our most powerful design with tremendous machine learning inference performance and

For simplicity of developing small, mobile robotics, check out beaglebone-blue-home, a highly integrated
board with motor drivers, battery support, altimeter, gyroscope, accelerometer, and much more to get
started developing quickly.

The System Reference Manual for each BeagleBone board is below. Older boards are supported with
links to their latest PDF-formatted System Reference Manual and the latest boards are included both
here and in the downloadable beagleboard-docs.pdf linked on the bottom-left of your screen.

• BeagleBone (original)

• beagleboneblack-home

• beaglebone-blue-home

• bbai64-home

• beaglebone-ai-home

21

https://git.beagleboard.org/beagleboard/beaglebone/-/blob/master/BeagleBone_SRM_A6_0_1.pdf

BeagleBoard Docs, Release 0.0.9

2.2 PocketBeagle

Contributors

• Maintaining author: Jason Kridner

• Contributing Editor: Cathy Wicks

PocketBeagle is an ultra-tiny-yet-complete open-source USB-key-fob computer. PocketBeagle features an
incredible low cost, slick design and simple usage, making PocketBeagle the ideal development board for
beginners and professionals alike.

2.2.1 Introduction

This document is the System Reference Manual for PocketBeagle and covers its use and design. Pock-
etBeagle is an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob-
computer. PocketBeagle features an incredible low cost, slick design and simple usage, making it the ideal
development board for beginners and professionals alike. Simply develop directly in a web browser pro-
viding you with a playground for programming and electronics. Exploring is made easy with several
available libraries and tutorials with many more coming.

PocketBeagle will boot directly from a microSD card. Load a Linux distribution onto your card, plug
your board into your computer and get started. PocketBeagle runs GNU.Linux, so you can leverage many
different high-level programming languages and a large body of drivers that prevent you from needing
to write a lot of your own software.

This design will keep improving as the product matures based on feedback and experience. Software
updates will be frequent and will be independent of the hardware revisions and as such not result in a
change in the revision number of the board. A great place to find out the latest news and projects for
PocketBeagle is on the home page beagleboard.org/pocket

22 Chapter 2. Boards

mailto:jkridner@beagleboard.org
mailto:cathy@beagleboard.org
https://beagleboard.org/pocket

BeagleBoard Docs, Release 0.0.9

Important: Make sure you check the BeagleBoard.org docs repository for the most up to date informa-
tion.

Fig. 2.1: PocketBeagle Home Page

2.2.2 Change History

This section describes the change history of this document and board. Document changes are not always
a result of a board change. A board change will always result in a document change.

Document Change History

Table 2.1: Change History
Rev Changes Date By
A.x Production Document December 7, 2017 JK
0.0.5 Converted to .rst and gitlab hosting July 21, 2022 DK

Board Changes

Table 2.2: Board History
Rev Changes Date By
A1 Preliminary February 14, 2017 JK
A2 Production. Fixed mikroBUS Click reset pins (made GPIO). September 22, 2017 JK

PocketBone Upon the creation of the first, 27mm-by-27mm, Octavo Systems OSD3358 SIP, Jason did
a hack two-layer board in EAGLE called “PocketBone” to drop the Beagle name as this was a totally
unofficial effort not geared at being a BeagleBoard.org Foundation project. The board never worked
because the 32kHz and 24MHz crystals were backwards and Michael Welling decided to pick it up and
redo the design in KiCad as a four-layer board. Jason paid for some prototypes and this resulted in the
first successful “PocketBone”, a fully-open-source 1-GHz Linux computer in a fitting into a mini-mint tin.

Rev A1 The Rev A1 of PocketBeagle was a prototype not released to production. A few lines were
wrong to be able to control mikroBUS Click add-on board reset lines and they were adjusted.

2.2. PocketBeagle 23

https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 0.0.9

Rev A2 The Rev A2 of PocketBeagle was released to production and
[https://www.prnewswire.com/news-releases/small-in-size–cost-meet-pocketbeagle-the-25-
development-board-for-hobbyists-educators-and-professionals-300519950.htmllaunched at World
MakerFaire 2017].

Known issues in rev A2:

Issue Link
GPIO44 is incorrectly labelled as GPIO48 github .com/beagleboard/pocketbeagle/is sues/4

2.2.3 Connecting Up PocketBeagle

This section provides instructions on how to hook up your board. The most common scenario is tethering
PocketBeagle to your PC for local development.

What’s In the Package

In the package you will find two items as shown in figures below.

• PocketBeagle

• Getting Started instruction card with link to the support URL.

Fig. 2.2: PocketBeagle Package

Connecting the board

This section will describe how to connect to the board. Information can also be found on the Quick Start
Guide that came in the box. Detailed information is also available at beagleboard.org/getting-started

The board can be configured in several different ways, but we will discuss the most common scenario.
Future revisions of this document may include additional configurations.

Tethered to a PC using Debian Images

In this configuration, you will need the following additional items:

24 Chapter 2. Boards

https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://github.com/beagleboard/pocketbeagle/issues/4
https://beagleboard.org/getting-started

BeagleBoard Docs, Release 0.0.9

Fig. 2.3: PocketBeagle Package Insert front

Fig. 2.4: PocketBeagle Package Insert back

2.2. PocketBeagle 25

BeagleBoard Docs, Release 0.0.9

• microUSB to USB Type A Cable

• microSD card (>=4GB and <128GB)

The board is powered by the PC via the USB cable, no other cables are required. The board is accessed
either as a USB storage drive or via a web browser on the PC. You need to use either Firefox or Chrome
on the PC, IE will not work properly. Figure below shows this configuration.

Fig. 2.5: Tethered Configuration

In some instances, such as when additional add-on boards, or PocketCapes are connected, the PC may
not be able to supply sufficient power for the full system. In that case, review the power requirements
for the add-on board/cape; additional power may need to be supplied via the 5v input, but rarely is this
the case.

26 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Getting Started The following steps will guide you to quickly download a PocketBeagle software image
onto your microSD card and get started writing code.

1. Navigate to the Getting Started Page beagleboard.org/getting-started Follow along with the instruc-
tions and click on the link noted in Figure 5 below beagleboard.org/latest-images. You can also get to
this page directly by going to bbb.io/latest

Fig. 2.6: Getting Started Page

1. Download the latest image onto your computer by following the link to the latest image and click
on the Debian image for Stretch IoT (non-GUI) for BeagleBone and PocketBeagle via microSD card. See
Figure 6 below. This will download a .img.xz file into the downloads folder of your computer.

Fig. 2.7: Download Latest Software Image

1. Transfer the image to a microSD card.

Download and install an SD card programming utility if you do not already have one. We like https:
//etcher.io/ for new users and so we show that one in the steps below. Go to your downloads folder and
doubleclick on the .exe file and follow the on-screen prompts. See figure 7.

Insert a new microSD card into a card reader/writer and attach it via the USB connection to your com-
puter. Follow the instructions on the screen for selecting the .img file and burning the image from your
computer to the microSD card. Eject the SD card reader when prompted and remove the card. See
Figures 8 and 9.

1. Insert the microSD card into the board - you’ll hear a satisfying click when it seats properly into the
slot. It is important that your microSD card is fully inserted prior to powering the system.

1. Connect the micro USB connector on your cable to the board as shown in Figure 11. The microUSB
connector is fairly robust, but we suggest that you not use the cable as a leash for your PocketBeagle.
Take proper care not to put too much stress on the connector or cable.

1. Connect the large connector of the USB cable to your Linux, Mac or Windows PC USB port as shown
in Figure 12. The board will power on and the power LED will be on as shown in Figure 13 below.

2.2. PocketBeagle 27

https://beagleboard.org/getting-started
https://beagleboard.org/latest-images
https://bbb.io/latest
https://etcher.io/
https://etcher.io/

BeagleBoard Docs, Release 0.0.9

Fig. 2.8: Download Etcher SD Card Utility

Fig. 2.9: Select the PocketBeagle Image

Fig. 2.10: Burn the Image to the SD Card

Fig. 2.11: Insert the microSD Card into PocketBeagle

28 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Fig. 2.12: Insert the micro USB Connector into PocketBeagle

Fig. 2.13: Insert the USB connector into PC

2.2. PocketBeagle 29

BeagleBoard Docs, Release 0.0.9

Fig. 2.14: Board Power LED

1. As soon as you apply power, the board will begin the booting process and the userLEDs Figure 14
will come on in sequence as shown below. It will take a few seconds for the status LEDs to come on, like
teaching PocketBeagle to ‘stay’. The LEDs will be flashing as it begins to boot the Linux kernel. While
the four user LEDS can be over written and used as desired, they do have specific meanings in the image
that you’ve initially placed on your microSD card once the Linux kernel has booted.

• USER0 is the heartbeat indicator from the Linux kernel.

• USER1 turns on when the microSD card is being accessed

• USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USER3 idle

Fig. 2.15: User LEDs

Accessing the Board and Getting Started with Coding The board will appear as a USB Storage drive
on your PC after the kernel has booted, which will take approximately 10 seconds. The kernel on the
board needs to boot before the port gets enumerated. Once the board appears as a storage drive, do the
following:

1. Open the USB Drive folder to view the files on your PocketBeagle.

2. Launch Interactive Quick Start Guide.

Right Click on the file named START.HTM and open it in Chrome or Firefox. This will use your browser to
open a file running on PocketBeagle via the microSD card. You will see file:///Volumes/BEAGLEBONE/
START.htm in the url bar of the browser. See Figure 15 below. This action displays an interactive Quick
Start Guide from PocketBeagle.

1. Enable a Network Connection.

Click on ‘Step 2’ of the Interactive Quick Start Guide page to follow instructions to “Enable a Network
Connection” (pointing to the DHCP server that is running on PocketBeagle). Copy the appropriate IP
Address from the chart (according to your PC operating system type) and paste into your browser then
add a :3000 to the end of it. See example in Figure 16 below. This will launch from PocketBeagle one of
it’s favorite Web Based Development Environments, Cloud9 IDE, (Figure 17) so that you can teach your
beagle new tricks!

1. Get Started Coding with Cloud9 IDE - blinking USR3 LED in JavaScript using the BoneScript library
example

1. Create a new text file

30 Chapter 2. Boards

file:///Volumes/BEAGLEBONE/START.htm
file:///Volumes/BEAGLEBONE/START.htm

BeagleBoard Docs, Release 0.0.9

Fig. 2.16: Interactive Quick Start Guide Launch

Fig. 2.17: Enable a Network Connection

Fig. 2.18: Launch Cloud9 IDE

2.2. PocketBeagle 31

BeagleBoard Docs, Release 0.0.9

Copy and paste the below code into the editor

var b = require('bonescript');
var state = b.LOW;
b.pinMode("USR3", b.OUTPUT);
setInterval(toggle, 250); // toggle 4 times a second, every 250ms
function toggle() {

if(state == b.LOW) state = b.HIGH;
else state = b.LOW;
b.digitalWrite("USR3", state);

}

32 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Save the new text file as blinkusr3.js within the default directory

Execute .. code-block:

node blinkusr3.js

within the default (/var/lib/cloud9) directory

Type CTRL+C to stop the program running

Powering Down

1. Standard Power Down Press the power button momentarily with a tap. The system will power down
automatically. This will shut down your software with grace. Software routines will run to completion.

2.2. PocketBeagle 33

BeagleBoard Docs, Release 0.0.9

The Standard Power Down can also be invoked from the Linux command shell via “sudo shutdown -h
now”.
2. Hard Power Down Press the power button for 10 seconds. This will force an immediate shut down of
the software. For example you may lose any items you have written to the memory. Holding the button
longer than 10 seconds will perform a power reset and the system will power back on.

1. Remove the USB cable Remember to hold your board firmly at the USB connection while you remove
the cable to prevent damage to the USB connector.

4. Powering up again. If you’d like to power up again without removing the USB cable follow these
instructions:

1. If you used Step 1 above to power down, to power back up, hold the power button for 10 seconds,
release then tap it once and the system will boot normally.

2. If you used Step 2 above to power down, to power back up, simply tap the power button and the
system will boot normally.

Fig. 2.19: Power Button

Other ways to Connect up to your PocketBeagle

The board can be configured in several different ways. Future revisions of this document may include
additional configurations.

As other examples become documented, we’ll update them on the Wiki for PocketBeagle
github.com/beagleboard/pocketbeagle/wiki See also the on-line discussion.

2.2.4 PocketBeagle Overview

PocketBeagle is built around Octavo Systems’ OSD335x-SM System-In-Package that integrates a high-
performance Texas Instruments AM3358 processor, 512MB of DDR3, power management, nonvolatile
serial memory and over 100 passive components into a single package. This integration saves board
space by eliminating several packages that would otherwise need to be placed on the board, but more
notably simplifies our board design so we can focus on the user experience.

The compact PocketBeagle design also offers access through the expansion headers to many of the inter-
faces and allows for the use of add-on boards called PocketCapes and Click Boards from MikroElektron-
ika, to add many different combinations of features. A user may also develop their own board or add
their own circuitry.

PocketBeagle Features and Specification

This section covers the specifications and features of the board in a chart and provides a high level
description of the major components and interfaces that make up the board.

34 Chapter 2. Boards

https://github.com/beagleboard/pocketbeagle/wiki
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/beagleboard/JtOGZb-FH2A/9GVu7I6kAQAJ

BeagleBoard Docs, Release 0.0.9

Table 2.3: PocketBeagle Features
Feature
System-In-
Package

Octavo Systems OSD335x-SM in 256 Ball BGA (21mm x 21mm)

SiP Incorpo-
rates
Processor Texas Instruments 1GHz Sitara™ AM3358 ARM® Cortex®-A8 with NEON floating-

point accelerator
Graphics En-
gine

Imagination Technologies PowerVR SGX530 Graphics Accelerator

Real-Time
Units

2x programmable real-time unit (PRU) 32-bit 200MHz microcontrollers with single-
cycle I/O latency

Coprocessor ARM® Cortex®-M3 for power management functions
SDRAM Mem-
ory

512MB DDR3 800MHz RAM

Non-Volatile
Memory

4KB I2C EEPROM for board configuration information

Power Man-
agement

TPS65217C PMIC along with TL5209 LDO to provide power to the system with
integrated 1-cell LiPo battery support

Connectivity
SD/MMC Bootable microSD card slot
USB High speed USB 2.0 OTG (host/client) micro-B connector
Debug Support JTAG test points and gdb/other monitor-mode debug possible
Power Source microUSB connector, also expansion header options (battery, VIN or USB-VIN)
User I/O Power Button with press detection interrupt via TPS65217C PMIC
Expansion
Header
USB High speed USB 2.0 OTG (host/client) control signals
Analog Inputs 8 analog inputs with 6 @ 1.8V and 2 @ 3.3V along with 1.8V references
Digital I/O 44 digital GPIOs accessible with 18 enabled by default including 2 shared with the

3.3V analog input pins
UART 3 UARTs accessible with 2 enabled by default
I2C 2 I2C busses enabled by default
SPI 2 SPI busses with single chip selects enabled by default
PWM 4 Pulse Width Modulation outputs accessible with 2 enabled by default
QEP 2 Quadrature encoder inputs accessible
CAN 2 CAN bus controllers accessible

OSD3358-512M-BSM System in Package The Octavo Systems OSD3358-512M-BSM System-In-
Package (SiP) is part of a family of products that are building blocks designed to allow easy and cost-
effective implementation of systems based in Texas Instruments powerful Sitara AM335x line of pro-
cessors. The OSD335x-SM integrates the AM335x along with the TI TPS65217C PMIC, the TI TL5209
LDO, up to 1 GB of DDR3 Memory, a 4 KB EEPROM for non-volatile configuration storage and resistors,
capacitors and inductors into a single 21mm x 21mm design-in-ready package.

With this level of integration, the OSD335x-SM family of SiPs allows designers to focus on the key aspects
of their system without spending time on the complicated high-speed design of the processor/DDR3
interface or the PMIC power distribution. It reduces size and complexity of design.

Full Datasheet and more information is available at octavosystems.com/octavo_products/osd335x-sm/

Board Component Locations

This section describes the key components on the board, their location and function.

2.2. PocketBeagle 35

https://octavosystems.com/octavo_products/osd335x-sm/

BeagleBoard Docs, Release 0.0.9

Figure below shows the locations of the devices, connectors, LEDs, and switches on the PCB layout of
the board.

Fig. 2.20: Key Board Component Locations

Key Components

• The Octavo Systems OSD3358-512M-BSM System-In-Package is the processor system for the
board

• P1 and P2 Headers come unpopulated so a user may choose their orientation

• User LEDs provides 4 programmable blue LEDs

• Power BUTTON can be used to power up or power down the board (see section 3.3.3 for details)

• USB 2.0 OTG is a microUSB connection to a PC that can also power the board

• Power LED provides communication regarding the power to the board

• microSD slot is where a microSD card can be installed.

2.2.5 PocketBeagle High Level Specification

This section provides the high level specification of PocketBeagle.

Block Diagram

Figure 22 below is the high level block diagram of PocketBeagle.

Fig. 2.21: PocketBeagle Key Components

36 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

System in Package (SiP)

The OSD335x-SM Block Diagram is detailed in Figure 23 below. More information, including design
resources are available on the ‘Octavo Systems Website’

Fig. 2.22: OSD335x SIP Block Diagram

Note: PocketBeagle utilizes the 512MB DDR3 memory size version of the OSD335x-SM A few of the
features of the OSD335x-SM SiP may not be available on PocketBeagle headers. Please check Section 7
for the P1 and P2 header pin tables.

Connectivity

Expansion Headers PocketBeagle gives access to a large number of peripheral functions and GPIO via
2 dual rail expansion headers. With 36 pins each, the headers have been left unpopulated to enable
users to choose the header connector orientation or add-on board / cape connector style. Pins are
clearly marked on the bottom of the board with additional pin configurations available through software
settings. Detailed information is available in Section 7.

Fig. 2.23: PocketBeagle Expansion Headers

2.2. PocketBeagle 37

https://octavosystems.com/octavo_products/osd335x-sm

BeagleBoard Docs, Release 0.0.9

microSD Connector The board is equipped with a single microSD connector to act as the primary boot
source for the board. Just about any microSD card you have will work, we commonly find 4G to be
suitable.

When plugging in the SD card, the writing on the card should be up. Align the card with the connector
and push to insert. Then release. There should be a click and the card will start to eject slightly, but it
then should latch into the connector. To eject the card, push the SD card in and then remove your finger.
The SD card will be ejected from the connector. Do not pull the SD card out or you could damage the
connector.

Fig. 2.24: microSD Connector

USB 2.0 Connector The board has a microUSB connector that is USB 2.0 HS compatible that connects
the USB0 port to the SiP. Generally this port is used as a client USB port connected to a power source, such
as your PC, to power the board. If you would like to use this port in host mode you will need to supply
power for peripherals via Header P1 pin 7 (USB1.VIN) or through a powered USB Hub. Additionally, in
the USB host configuration, you will need to power the board through Header P1 pin 1 (VIN) or Header
P1 pin 7 (USB1.VIN) or Header P2 pin 14 (BAT.VIN)

Fig. 2.25: USB 2.0 Connector

Boot Modes There are three boot modes:

• SD Boot: MicroSD connector acts as the primary boot source for the board. This is described in
Section 3.

• USB Boot: This mode supports booting over the USB port. More information can be found in the
project called “BeagleBoot” This project ported the BeagleBone bootloader server BBBlfs(currently
written in c) to JavaScript(node.js) and make a cross platform GUI (using electron framework)
flashing tool utilizing the etcher.io project. This will allow a single code base for a cross platform
tool. For more information on BeagleBoot, see the BeagleBoot Project Page.

• Serial Boot: This mode will use the serial port to allow downloading of the software. A separate
USB to TTL level serial UART converter cable is required or you can connect one of the Mikroelek-
tronika FTDI Click Boards to use this method. The UART pins on PocketBeagle’s expansion headers
support the interface. For more information regarding the pins on the expansion headers and
various modes, see Section 7.

38 Chapter 2. Boards

https://medium.com/@ravikp7/gsoc-2017-final-report-beagleboot-a20d28c8d632
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click

BeagleBoard Docs, Release 0.0.9

Table 2.4: UART Pins on Expansion Headers for Serial Boot
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.22 GND GND
P1.30 U0_TX E16 B12 uart0_txd
P1.32 U0_RX E15 A12 uart0_rxd

If the Serial Boot is not in use, the UART0 pins can be used for Serial Debug. See Section 5.6 for more
information.

Software to support USB and serial boot modes is not provided by beagleboard.org. Please contact TI for
support of this feature.

Power

The board can be powered from three different sources:

• A USB port on a PC.

• A power supply with a USB connector.

• Expansion Header pins.

Note: VIN-USB is directly shorted between the USB connector on PocketBeagle and USB1_VI on the
expansion headers. You should only source power to the board over one of these and may optionally use
the other as a power sink.

The tables below show the power related pins available on PocketBeagle’s Expansion Headers.

Table 2.5: Power Inputs Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.01 VIN P10, R10, T10 VIN
P1.07 USB1_VI P9, R9, T9 VIN-USB
P2.14 BAT_+ P8, R8, T8 VIN-BAT

Table 2.6: Power Outputs Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.14 +3.3V F6, F7, G6, G7 VOUT-3.3V
P1.24 VOUT K6, K7, L6, L7 VOUT-5V
P2.13 VOUT K6, K7, L6, L7 VOUT-5V
P2.23 +3.3V F6, F7, G6, G7 VOUT-3.3V

Table 2.7: Ground Pins Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.15 USB1_GND GND
P1.16 GND GND
P1.22 GND GND
P2.15 GND GND
P2.21 GND GND

Note: A comprehensive tutorial for Power Inputs and Outputs for the OSD335x System in Package is
available in the ‘Tutorial Series’ on the Octavo Systems website.

2.2. PocketBeagle 39

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/power-input-ouput/

BeagleBoard Docs, Release 0.0.9

JTAG Pads

Pads for an optional connection to a JTAG emulator has been provided on the back of PocketBeagle.
More information about JTAG emulation can be found on the TI website - ‘Entry-level debug through
full-capability development’

Fig. 2.26: JTAG Pad Connections

Serial Debug Port

Serial debug is provided via UART0 on the processor. See Section 5.3.4 for the Header Pin table. Signals
supported are TX and RX. None of the handshake signals (CTS/RTS) are supported. A separate USB to
TTL level serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI
Click Boards to use this method.

If serial boot is not used, the UART0 can be used to view boot messages during startup and can provide
access to a console using a terminal access program like Putty. To view the boot messages or use the
console the UART should be set to a baud rate of 115200 and use 8 bits for data, no parity bit and 1 stop
bit (8N1).

2.2.6 Detailed Hardware Design

The following sections contain schematic references for PocketBeagle. Full schematics in both PDF and
Eagle are available on the ‘PocketBeagle Wiki’

OSD3358-SM SiP Design

Schematics for the OSD3358-SM SiP are divided into several diagrams.

40 Chapter 2. Boards

https://www.ti.com/tools-software/debug.html
https://www.ti.com/tools-software/debug.html
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
https://shop.mikroe.com/ftdi-click
http://www.putty.org/
https://github.com/beagleboard/pocketbeagle

BeagleBoard Docs, Release 0.0.9

Fig. 2.27: SiP A OSD3358 SiP System and Power Signals

2.2. PocketBeagle 41

BeagleBoard Docs, Release 0.0.9

SiP A OSD3358 SiP System and Power Signals

Fig. 2.28: SiP B OSD3358 SiP JTAG, USB & Analog Signals

SiP B OSD3358 SiP JTAG, USB & Analog Signals

SiP C OSD3358 SiP Peripheral Signals

SiP D OSD3358 SiP System Boot Configuration

SiP E OSD3358 SiP Power Signals

SiP F OSD3358 SiP Power Signals

MicroSD Connection

The Micro Secure Digital (microSD) connector design is highlighted in Figure 35.

USB Connector

The USB connector design is highlighted in Figure 36.

Note that there is an ID pin for dual-role (host/client) functionality. The hardware fully supports it, but
care should be taken to ensure the kernel in use is either statically or dynamically configured to recognize
and utilize the proper mode.

42 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Fig. 2.29: SiP C OSD3358 SiP Peripheral Signals

2.2. PocketBeagle 43

BeagleBoard Docs, Release 0.0.9

Fig. 2.30: SiP D OSD3358 SiP System Boot Configuration

Fig. 2.31: SiP E OSD3358 SiP Power Signals

44 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Fig. 2.32: microSD Connections

2.2. PocketBeagle 45

BeagleBoard Docs, Release 0.0.9

Fig. 2.33: USB Connection

Power Button Design

The power button design is highlighted in Figure 37.

Fig. 2.34: Power Button

User LEDs

There are four user programmable LEDs on PocketBeagle. The design is highlighted in Figure 38. Table
6 Provides the LED control signals and pins. A logic level of “1” will cause the LEDs to turn on.

Table 2.8: User LED Control Signals/Pins
LED Signal Name Proc Ball SiP Ball
USR0 GPIO1_21 V15 P13
USR1 GPIO1_22 U15 T14
USR2 GPIO1_23 T15 R14
USR3 GPIO1_24 V16 P14

46 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Fig. 2.35: User LEDs

JTAG Pads

There are 7 pads on the bottom of PocketBeagle to connect JTAG for debugging. The design is highlighted
in Figure 39. More information regarding JTAG debugging can be found at ‘www.ti.com/jtag’

Fig. 2.36: JTAG Pads Design

PRU-ICSS

The Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem (PRU-ICSS)
module is located inside the AM3358 processor, which is inside the Octavo Systems SiP. Commonly re-
ferred to as just the “PRU”, this little subsystem will unleash a lot of performance for you to use in your
application. Consisting of dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs), data and in-
struction memories, internal peripheral modules, and an interrupt controller (INTC). The programmable
nature of the PRU-ICSS, along with their access to pins, events and all SoC resources, provides flexi-
bility in implementing fast real-time responses, specialized data handling operations, custom peripheral

2.2. PocketBeagle 47

https://www.ti.com/jtag

BeagleBoard Docs, Release 0.0.9

interfaces, and in offloading tasks from the other processor cores of the system-on-chip (SoC). Access to
these pins is provided by PocketBeagle’s expansion headers and is multiplexed with other functions on
the board. Access is not provided to all of the available pins.

Some getting started information can be found on https://beagleboard.org/pru.

Additional documentation is located on the Texas Instruments web-
site at processors.wiki.ti.com/index.php/PRU-ICSS and also located at
http://github.com/beagleboard/am335x_pru_package.

Example projects using the PRU-ICSS can be found at processors.wiki.ti.com/index.php/PRU_Projects.

PRU-ICSS Features The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

• 32-Bit Load/Store RISC architecture

• 8K Byte instruction RAM (2K instructions) per core

• 8K Bytes data RAM per core

• 12K Bytes shared RAM

• Operating frequency of 200 MHz

• PRU operation is little endian similar to ARM processor

• All memories within PRU-ICSS support parity

• Includes Interrupt Controller for system event handling

• Fast I/O interface

– 16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the PocketBeagle.
Please check the Pin Table below for PRU-ICSS features available through the P1 and P2 headers.)

PRU-ICSS Block Diagram Figure below is a high level block diagram of the PRU-ICSS.

PRU-ICSS Pin Access Both PRU 0 and PRU1 are accessible from the expansion headers. Listed below
are the ports that can be accessed on each PRU.

Table 6. below shows which PRU-ICSS signals can be accessed on PocketBeagle and on which connector
and pins on which they are accessible. Some signals are accessible on the same pins.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this
document, you will need to print this chart separately.

Table 2.9: PRU0 and PRU1 Access
Header.Pin Silkscreen Processor Ball SiP Ball Mode3 Mode4 Mode5 Mode6 Note
P1.02 A6/87 R5 F2 pr1_pru1_pru_r30_9 (Output) pr1_pru1_pru_r31_9 (Input)

continues on next page

48 Chapter 2. Boards

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://github.com/beagleboard/am335x_pru_package
http://processors.wiki.ti.com/index.php/PRU_Projects

BeagleBoard Docs, Release 0.0.9

Table 2.9 – continued from previous page
Header.Pin Silkscreen Processor Ball SiP Ball Mode3 Mode4 Mode5 Mode6 Note
P1.04 89 R6 E1 pr1_pru1_pru_r30_11 (Output) pr1_pru1_pru_r31_11 (Input)
P1.06 SPI0_CS A16 A14 pr1_uart0_txd (Output) UART Transmit Data
P1.08 SPI0_CLK A17 A13 pr1_uart0_cts_n (Input) UART Clear to Send
P1.10 SPI0_MISO B17 B13 pr1_uart0_rts_n (Output) UART Request to Send
P1.12 SPI0_MOSI B16 B14 pr1_uart0_rxd (Input) UART Receive Data
P1.20 20 D14 B4 pr1_pru0_pru_r31_16 (Input)
P1.26 I2C2_SDA D18 B10 pr1_uart0_cts_n (Input) UART Clear to Send
P1.28 I2C2_SCL D17 A10 pr1_uart0_rts_n (Output) UART Request to Send
P1.29 PRU0_7 A14 C4 pr1_pru0_pru_r30_7 (Output) pr1_pru0_pru_r31_7 (Input)
P1.30 U0_TX E16 B12 pr1_pru1_pru_r30_15 (Output) pr1_pru1_pru_r31_15 (Input)
P1.31 PRU0_4 B12 A3 pr1_pru0_pru_r30_4 (Output) pr1_pru0_pru_r31_4 (Input)
P1.32 U0_RX E15 A12 pr1_pru1_pru_r30_14 (Output) pr1_pru1_pru_r31_14 (Input)
P1.33 PRU0_1 B13 A2 pr1_pru0_pru_r30_1 (Output) pr1_pru0_pru_r31_1 (Input)
P1.35 P1.10 V5 F1 pr1_pru1_pru_r30_10 (Output) pr1_pru1_pru_r31_10 (Input)
P1.36 PWM0A A13 A1 pr1_pru0_pru_r30_0 (Output) pr1_pru0_pru_r31_0 (Input)
P2.09 I2C1_SCL D15 B11 pr1_uart0_txd (Output) pr1_pru0_pru_r31_16 (Input) UART Transmit Data
P2.11 I2C1_SDA D16 A11 pr1_uart0_rxd (Input) pr1_pru1_pru_r31_16 (Input) UART Receive Data
P2.17 65 V12 T7 pr1_mdio_mdclk MDIO Clk
P2.18 47 U13 P7 pr1_ecap0_ecap_capin_apwm_o pr1_pru0_pru_r31_15 (Input) Enhanced capture input or Auxiliary PWM out
P2.20 64 T13 R7 pr1_mdio_data MDIO Data
P2.22 46 V13 T6 pr1_pru0_pru_r31_14 (Input)
P2.24 48 T12 P6 pr1_pru0_pru_r30_14 (Output)
P2.28 PRU0_6 D13 C3 pr1_pru0_pru_r30_6 Output) pr1_pru0_pru_r31_6 (Input)
P2.29 SPI1_CLK C18 C5 pr1_ecap0_ecap_capin_apwm_o Enhanced capture input or Auxiliary PWM out
P2.30 PRU0_3 C12 B1 pr1_pru0_pru_r30_3 (Output) pr1_pru0_pru_r31_3 (Input)
P2.31 SPI1_CS A15 A4 pr1_pru1_pru_r31_16 (Input)
P2.32 PRU0_2 D12 B2 pr1_pru0_pru_r30_2 (Output) pr1_pru0_pru_r31_2 (Input)
P2.33 45 R12 R6 pr1_pru0_pru_r30_15 (Output)
P2.34 PRU0_5 C13 B3 pr1_pru0_pru_r30_5 (Output) pr1_pru0_pru_r31_5 (Input)
P2.35 A5/86 U5 F3 pr1_pru1_pru_r30_8 (Output) pr1_pru1_pru_r31_8 (Input)

2.2.7 Connectors

This section describes each of the connectors on the board.

Expansion Header Connectors

The expansion interface on the board is comprised of two 36 pin connectors. The two Expansion Header
Connectors on PocketBeagle are labeled P1 and P2. The connections are a standard 100 mil distance so
that they can be compatible with many standard expansion items. The silkscreen for the headers on the
bottom of the board provides the easiest way to identify them. See Figure 41.

All signals on the expansion headers are 3.3V unless otherwise indicated.

Note:

• Do not connect 5V logic level signals to these pins or the board will be damaged.

• DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT
WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

• NO PINS ARE TO BE DRIVEN UNTIL AFTER THE NRESET LINE GOES HIGH.

2.2. PocketBeagle 49

BeagleBoard Docs, Release 0.0.9

Fig. 2.37: Expansion Headers for PocketBeagle

Figure 42 shows a color coded chart with an overview of the most popular functions of PocketBeagle’s
Expansion Header pins. The Header Pin tables in Sections 7.1.1 and 7.1.2 show the full pin assignments
for each header.

Fig. 2.38: Expansion Header Popular Functions - Color Coded

P1 Header

Figure 43 shows the schematic diagram for the P1 Header.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this
document you will need to print this chart separately.

50 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Table 2.10: P1 Header Pinout
Header.PinSilkscreenPock-

et-
Bea-
gle
wiring

Proc
Ball

SiP
Ball

Mode0
(Name)

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7

P1.01 VIN P1.01
(VIN)

P10
&
R10
&
T10

VIN

P1.02 A6/87 P1.02
(AIN6/GPIO87)

A8 C9 ain6

P1.02 A6/87 P1.02
(AIN6/GPIO87)

R5 F2 lcd_hsyncgpmc_a9gpmc_a2pr1_edio_data_in3pr1_edio_data_out3pr1_pru1_pru_r30_9pr1_pru1_pru_r31_9gpio2_23

P1.03 USB1_ENP1.03
(USB1-
DRVVBUS)

F15 M14 USB1_DRVVBUS
• • • • • •

gpio3_13

P1.04 89 P1.04
(PRU1.11)

R6 E1 lcd_ac_bias_engpmc_a11pr1_mii1_crspr1_edio_data_in5pr1_edio_data_out5pr1_pru1_pru_r30_11pr1_pru1_pru_r31_11gpio2_25

P1.05 USB1_VBP1.05
(USB1-
VBUS)

T18 M15 USB1_VBUS
• • • • • • •

P1.06 SPI0_CSP1.06
(SPI0-
CS)

A16 A14 spi0_cs0mmc2_sdwpI2C1_SCLehrpwm0_syncipr1_uart0_txdpr1_edio_data_in1pr1_edio_data_out1gpio0_5

P1.07 USB1_VIP1.07
(VIN-
USB)

P9
&R9
&T9

VIN-
USB

P1.08 SPI0_CLKP1.08
(SPI0-
CLK)

A17 A13 spi0_sclkuart2_rxdI2C2_SDAehrpwm0Apr1_uart0_cts_npr1_edio_sofEMU2 gpio0_02

continues on next page

2.2. PocketBeagle 51

BeagleBoard Docs, Release 0.0.9

Table 2.10 – continued from previous page
Header.PinSilkscreenPock-

et-
Bea-
gle
wiring

Proc
Ball

SiP
Ball

Mode0
(Name)

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7

P1.09 USB1
-

P1.09
(USB1-
DN)

R18 L16 USB1_DM
• • • • • • •

P1.10 SPI0_MISOP1.10
(SPI0-
MISO)

B17 B13 spi0_d0uart2_txdI2C2_SCLehrpwm0Bpr1_uart0_rts_npr1_edio_latch_inEMU3 gpio0_3

P1.11 USB1
+

P1.11
(USB1-
DP)

R17 L15 USB1_DP
• • • • • • •

P1.12 SPI0_MOSIP1.12
(SPI0-
MOSI)

B16 B14 spi0_d1mmc1_sdwpI2C1_SDAehrpwm0_tripzone_inputpr1_uart0_rxdpr1_edio_data_in0pr1_edio_data_out0gpio0_04

P1.13 USB1_IDP1.13
(USB1-
ID)

P17 L14 USB1_ID
• • • • • • •

P1.14 +3.3V P1.14
(VOUT-
3.3V)

F6 &
F7 &
G6 &
G7

VOUT-
3.3V

P1.15 USB1_GNDP1.15
(GND)

GND

P1.16 GND P1.16
(GND)

GND

P1.17 AIN(1.8V)-P1.17
(VREFN)

A9 B9 VREFN

P1.18 AIN(1.8V)A+P1.18
(VREFP)

B9 B7 VREFP

P1.19 AIN(1.8V)0P1.19
(AIN0-
1.8V)

B6 A8 ain0

P1.20 20 P1.20
(PRU0.16)

D14 B4 xdma_event_intr1
•

tclkin clk-
out2

timer7 pr1_pru0_pru_r31_16EMU3 gpio0_20

P1.21 AIN(1.8V)1P1.21
(AIN1-
1.8V)

C7 B8 ain1

P1.22 GND P1.22
(GND)

GND

P1.23 AIN(1.8V)2P1.23
(AIN2-
1.8V)

B7 B6 ain2

P1.24 VOUT P1.24
(VOUT-
5V)

K6 &
K7 &
L6 &
L7

VOUT-
5V

continues on next page

52 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Table 2.10 – continued from previous page
Header.PinSilkscreenPock-

et-
Bea-
gle
wiring

Proc
Ball

SiP
Ball

Mode0
(Name)

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7

P1.25 AIN(1.8V)3P1.25
(AIN3-
1.8V)

A7 C6 ain3

P1.26 I2C2_SDAP1.26
(I2C2-
SDA)

D18 B10 uart1_ctsntimer6 dcan0_txI2C2_SDAspi1_cs0pr1_uart0_cts_npr1_edc_latch0_ingpio0_12

P1.27 AIN(1.8V)4P1.27
(AIN4-
1.8V)

C8 C7 ain4

P1.28 I2C2_SCLP1.28
(I2C2-
SCL)

D17 A10 uart1_rtsntimer5 dcan0_rxI2C2_SCLspi1_cs1pr1_uart0_rts_npr1_edc_latch1_ingpio0_13

P1.29 PRU0_7P1.29
(PRU0.7)

A14 C4 mcasp0_ahclkxeQEP0_strobemcasp0_axr3mcasp1_axr1EMU4 pr1_pru0_pru_r30_7pr1_pru0_pru_r31_7gpio3_21

P1.30 U0_TX P1.30
(UART0-
TX)

E16 B12 uart0_txdspi1_cs1dcan0_rxI2C2_SCLeCAP1_in_PWM1_outpr1_pru1_pru_r30_15pr1_pru1_pru_r31_15gpio1_11

P1.31 PRU0_4P1.31
(PRU0.4)

B12 A3 mcasp0_aclkreQEP0A_inmcasp0_axr2mcasp1_aclkxmmc0_sdwppr1_pru0_pru_r30_4pr1_pru0_pru_r31_4gpio3_18

P1.32 U0_RX P1.32
(UART0-
RX)

E15 A12 uart0_rxdspi1_cs0dcan0_txI2C2_SDAeCAP2_in_PWM2_outpr1_pru1_pru_r30_14pr1_pru1_pru_r31_14gpio1_10

P1.33 PRU0_1P1.33
(PRU0.1)

B13 A2 mcasp0_fsxehrpwm0B
•

spi1_d0mmc1_sdcdpr1_pru0_pru_r30_1pr1_pru0_pru_r31_1gpio3_15

P1.34 26 P1.34
(GPIO0.26)

T11 R5 gpmc_ad10lcd_data21mmc1_dat2mmc2_dat6ehrpwm2_tripzone_inputpr1_mii0_txen
•

gpio0_26

P1.35 P1.10 P1.35
(PRU1.10)

V5 F1 lcd_pclkgpmc_a10pru_mii0_crspr1_edio_data_in4pr1_edio_data_out4pr1_pru1_pru_r30_10pr1_pru1_pru_r31_10gpio2_24

P1.36 PWM0AP1.36
(PWM0A)

A13 A1 mcasp0_aclkxehrpwm0A
•

spi1_sclkmmc0_sdcdpr1_pru0_pru_r30_0pr1_pru0_pru_r31_0gpio3_14

P2 Header

Figure 44 shows the schematic diagram for the P2 Header.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this
document you will need to print this chart separately.

2.2. PocketBeagle 53

BeagleBoard Docs, Release 0.0.9

Fig. 2.39: P2 Header

Table 2.11: P2 Header Pinout
Header.PinSilkscreenPock-

et-
Bea-
gle
wiring

Proc
Ball

SiP
Ball

Mode0
(Name)

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7

P2.01 PWM1AP2.01
(PWM1A)

U14 P12 gpmc_a2gmii2_txd3rgmii2_td3mmc2_dat1gpmc_a18pr1_mii1_txd2ehrpwm1Agpio1_18

P2.02 59 P2.02
(GPIO1.27)

V17 T16 gpmc_a11gmii2_rxd0rgmii2_rd0rmii2_rxd0gpmc_a27pr1_mii1_rxermcasp0_axr1gpio1_27

P2.03 23 P2.03
(GPIO0.23)

T10 P5 gpmc_d9lcd_data22mmc1_dat1mmc2_dat5ehrpwm2Bpr1_mii0_col
•

gpio0_23

P2.04 58 P2.04
(GPIO1.26)

T16 R15 gpmc_a10gmii2_rxd1rgmii2_rd1rmii2_rxd1gpmc_a26pr1_mii1_rxdvmcasp0_axr0gpio1_26

P2.05 U1_RX P2.05
(UART4-
RX)

T17 P15 gpmc_wait0gmii2_crsgpmc_csn4rmii2_crs_dvmmc1_sdcdpr1_mii1_coluart4_rxdgpio0_30

P2.06 57 P2.06
(GPIO1.25)

U16 T15 gpmc_a9gmii2_rxd2rgmii2_rd2mmc2_dat7
/
rmii2_crs_dv

gpmc_a25pr1_mii_mr1_clkmcasp0_fsxgpio1_25

P2.07 U1_TX P2.07
(UART4-
TX)

U17 R16 gpmc_wpgmii2_rxerrgpmc_csn5rmii2_rxerrmmc2_sdcdpr1_mii1_txenuart4_txdgpio0_31

P2.08 60 P2.08
(GPIO1.28)

U18 N14 gpmc_be1ngmii2_colgpmc_csn6mmc2_dat3gpmc_dirpr1_mii1_rxlinkmcasp0_aclkrgpio1_28

P2.09 I2C1_SCLP2.09
(I2C1-
SCL)

D15 B11 uart1_txdmmc2_sdwpdcan1_rxI2C1_SCL
•

pr1_uart0_txdpr1_pru0_pru_r31_16gpio0_15

P2.10 52 P2.10
(GPIO1.20)

R14 R13 gpmc_a4gmii2_txd1rgmii2_td1rmii2_txd1gpmc_a20pr1_mii1_txd0eQEP1A_ingpio1_20

continues on next page

54 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Table 2.11 – continued from previous page
Header.PinSilkscreenPock-

et-
Bea-
gle
wiring

Proc
Ball

SiP
Ball

Mode0
(Name)

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7

P2.11 I2C1_SDAP2.11
(I2C1-
SDA)

D16 A11 uart1_rxdmmc1_sdwpdcan1_txI2C1_SDA
•

pr1_uart0_rxdpr1_pru1_pru_r31_16gpio0_14

P2.12 PB P2.12
(POWER_BTN)

T11 POWER

P2.13 VOUT P2.13
(VOUT-
5V)

K6,
K7,
L6,
L7

VOUT-
5V

P2.14 BAT
+

P2.14
(VIN-
BAT)

P8,
R8,
T8

VIN-
BAT

P2.15 GND P2.15
(GND)

GND

P2.16 BAT
-

P2.16
(BAT-
TEMP)

N6 BAT-
TEMP

P2.17 65 P2.17
(GPIO2.1)

V12 T7 gpmc_clklcd_memory_clkgpmc_wait1mmc2_clkpr1_mii1_crspr1_mdio_mdclkmcasp0_fsrgpio2_01

P2.18 47 P2.18
(PRU0.15i)

U13 P7 gpmc_ad15lcd_data16mmc1_dat7mmc2_dat3eQEP2_strobepr1_ecap0_ecap_capin_apwm_opr1_pru0_pru_r31_15gpio1_15P

P2.19 27 P2.19
(GPIO0.27)

U12 T5 gpmc_ad11lcd_data20mmc1_dat3mmc2_dat7ehrpwm0_syncopr1_mii0_txd3
•

gpio0_27

P2.20 64 P2.20
(GPIO2.0)

T13 R7 gpmc_csn3gpmc_a3rmii2_crs_dvmmc2_cmdpr1_mii0_crspr1_mdio_dataEMU4 gpio2_00

P2.21 GND P2.21
(GND)

GND

P2.22 46 P2.22
(GPIO1.14)

V13 T6 gpmc_ad14lcd_data17mmc1_dat6mmc2_dat2eQEP2_indexpr1_mii0_txd0pr1_pru0_pru_r31_14gpio1_14

P2.23 +3.3V P2.23
(VOUT-
3.3V)

F6 &
F7 &
G6 &
G7

VOUT-
3.3V

P2.24 48 P2.24
(GPIO1.12)

T12 P6 gpmc_ad12lcd_data19mmc1_dat4mmc2_dat0eQEP2A_inpr1_mii0_txd2pr1_pru0_pru_r30_14gpio1_12

P2.25 SPI1_MOSIP2.25
(SPI1-
MOSI)

E17 C13 uart0_rtsnuart4_txddcan1_rxI2C1_SCLspi1_d1spi1_cs0pr1_edc_sync1_outgpio1_09

P2.26 RST P2.26
(NRE-
SET)

A10 R11 nRE-
SETIN_OUT• • • • • • •

P2.27 SPI1_MISOP2.27
(SPI1-
MISO)

E18 C12 uart0_ctsnuart4_rxddcan1_txI2C1_SDAspi1_d0timer7 pr1_edc_sync0_outgpio1_08

continues on next page

2.2. PocketBeagle 55

BeagleBoard Docs, Release 0.0.9

Table 2.11 – continued from previous page
Header.PinSilkscreenPock-

et-
Bea-
gle
wiring

Proc
Ball

SiP
Ball

Mode0
(Name)

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7

P2.28 PRU0_6P2.28
(PRU0.6)

D13 C3 mcasp0_axr1eQEP0_index
•

mcasp1_axr0EMU3 pr1_pru0_pru_r30_6pr1_pru0_pru_r31_6gpio3_20

P2.29 SPI1_CLKP2.29
(SPI1-
CLK)

C18 C5 eCAP0_in_PWM0_outuart3_txdspi1_cs1pr1_ecap0_ecap_capin_apwm_ospi1_sclkmmc0_sdwpxdma_event_intr2gpio0_7

P2.30 PRU0_3P2.30
(PRU0.3)

C12 B1 mcasp0_ahclkrehrpwm0_syncimcasp0_axr2spi1_cs0eCAP2_in_PWM2_outpr1_pru0_pru_r30_3pr1_pru0_pru_r31_3gpio3_17

P2.31 SPI1_CSP2.31
(SPI1-
CS1)

A15 A4 xdma_event_intr0
•

timer4 clk-
out1

spi1_cs1pr1_pru1_pru_r31_16EMU2 gpio0_19

P2.32 PRU0_2P2.32
(PRU0.2)

D12 B2 mcasp0_axr0ehrpwm0_tripzone_input
•

spi1_d1mmc2_sdcdpr1_pru0_pru_r30_2pr1_pru0_pru_r31_2gpio3_16

P2.33 45 P2.33
(GPIO1.13)

R12 R6 gpmc_ad13lcd_data18mmc1_dat5mmc2_dat1eQEP2B_inpr1_mii0_txd1pr1_pru0_pru_r30_15gpio1_13

P2.34 PRU0_5P2.34
(PRU0.5)

C13 B3 mcasp0_fsreQEP0B_inmcasp0_axr3mcasp1_fsxEMU2 pr1_pru0_pru_r30_5pr1_pru0_pru_r31_5gpio3_19

P2.35 A5/86 P2.35
(AIN5/GPIO86)

B8 C8 ain5

P2.35 A5/86 P2.35
(AIN5/GPIO86)

U5 F3 lcd_vsyncgpmc_a8gpmc_a1pr1_edio_data_in2pr1_edio_data_out2pr1_pru1_pru_r30_8pr1_pru1_pru_r31_8gpio2_22

P2.36 A7(1.8)P2.36
(AIN7)

N13 ain7

mikroBUS socket connections

mikroBUS and, by extension “mikroBUS Click boards”, are trademarks of MikroElektronika. We do not
make any claims of compatibility nor adherence to their specification. We’ve just seen that many of the
Click boards “just work”.

The Expansion Headers on PocketBeagle have been designed to accept up to two Click Boards added to
the header pins at the same time. This provides an exciting opportunity to add functionality easily to
PocketBeagle from ‘hundreds of existing add-on Click Boards’.

The mikroBUS standard comprises a pair of 1×8 female headers with a standardized pin configuration.
The pinout (always laid out in the same order) consists of three groups of communications pins (SPI,
UART and I2C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two
power groups (+3.3V and 5V).

The Expansion Header pin alignment enables 2 Click Boards on the top side of PocketBeagle using the
inside rails of the headers. This leaves the outside rails open to be accessed from either the top or
the bottom of PocketBeagle. Place each Click Board into the position shown in Figure 46, with one Click
Board facing each direction. When choosing Click boards, make sure you are checking that they meet the
3.3V requirements for PocketBeagle. A growing number of community members are trying out various
Click Boards and posting results on the ‘PocketBeagle Wiki mikroBus Click Boards page’.

56 Chapter 2. Boards

https://shop.mikroe.com/click
https://github.com/beagleboard/pocketbeagle/wiki/mikroBus%E2%84%A2-Click-Boards

BeagleBoard Docs, Release 0.0.9

Fig. 2.40: mikroBUS

Fig. 2.41: PocketBeagle Both Headers

Setting up an additional USB Connection

You can add an additional USB connection to PocketBeagle easily by connecting a microUSB breakout.
By default in the current software, the system should be configured to use this port as a host. Keep up to
date on this project on the ‘PocketBeagle Wiki FAQ’.

2.2.8 PocketBeagle Cape Support

This is a placeholder for recommendations for those building their own PocketBeagle Cape designs. If
you’d like to join the conversation ‘check out the discussion on the forum for PocketBeagle’

See also PocketBeagle under ‘BeagleBoard Capes’

2.2. PocketBeagle 57

https://github.com/beagleboard/pocketbeagle/wiki/FAQ
https://forum.beagleboard.org/t/pocketbeagle-headers/26861
https://git.beagleboard.org/beagleboard/capes

BeagleBoard Docs, Release 0.0.9

2.2.9 PocketBeagle Mechanical

9.1 Dimensions and Weight

Size: 2.21” x 1.38” (56mm x 35mm)

Max height: .197” (5mm)

PCB size: 55mm x 35mm

PCB Layers: 4

PCB thickness: 1.6mm

RoHS Compliant: Yes

Weight: 10g

Rough model can be found at github.com/beagleboard/pocketbeagle/tree/master/models

2.2.10 Additional Pictures

Fig. 2.42: PocketBeagle Front BW

2.2.11 Support Information

All support for this design is through the BeagleBoard.org community at:

• beagleboard@googlegroups.com or

• beagleboard.org/discuss.

58 Chapter 2. Boards

https://github.com/beagleboard/pocketbeagle/tree/master/models
https://beagleboard.org/chat
https://beagleboard.org/discuss

BeagleBoard Docs, Release 0.0.9

Fig. 2.43: PocketBeagle Back BW

Hardware Design

Design documentation can be found on the wiki. https://github.com/beagleboard/pocketbeagle Includ-
ing:

• Schematic in PDF https://github.com/beagleboard/pocketbeagle/blob/master/PocketBeagle_sch.
pdf

• Schematic and layout in EAGLE https://github.com/beagleboard/pocketbeagle/tree/master/
EAGLE

• Schematic and layout in KiCAD https://github.com/beagleboard/pocketbeagle/tree/master/
KiCAD

• Bill of Materials https://github.com/beagleboard/pocketbeagle/blob/master/PocketBeagle_BOM.
csv

• System Reference Manual https://github.com/beagleboard/pocketbeagle.

Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the
latest version can be found at:

Download the latest software files from beagleboard.org/latest-images

Export Information

• ECCN: EAR99

• CCATS: G173833

2.2. PocketBeagle 59

https://github.com/beagleboard/pocketbeagle
https://github.com/beagleboard/pocketbeagle/blob/master/PocketBeagle_sch.pdf
https://github.com/beagleboard/pocketbeagle/blob/master/PocketBeagle_sch.pdf
https://github.com/beagleboard/pocketbeagle/tree/master/EAGLE
https://github.com/beagleboard/pocketbeagle/tree/master/EAGLE
https://github.com/beagleboard/pocketbeagle/tree/master/KiCAD
https://github.com/beagleboard/pocketbeagle/tree/master/KiCAD
https://github.com/beagleboard/pocketbeagle/blob/master/PocketBeagle_BOM.csv
https://github.com/beagleboard/pocketbeagle/blob/master/PocketBeagle_BOM.csv
https://github.com/beagleboard/pocketbeagle
https://beagleboard.org/latest-images

BeagleBoard Docs, Release 0.0.9

• Documentation: github.com/beagleboard/pocketbeagle/blob/master/regulatory/PocketBeagle_Export_Classification.pdf

RMA Support

If you feel your board is defective or has issues and before returning merchandise, please seek approval
from the manufacturer using beagleboard.org/support/rma. You will need the manufacturer, model,
revision and serial number of the board.

Getting Help

If you need some up to date troubleshooting techniques, the Wiki is a great place to start
github.com/beagleboard/pocketbeagle/wiki.

If you need professional support, check out beagleboard.org/resources.

2.3 Capes

Note: This page is under development.

Capes are add-on boards for BeagleBone or PocketBeagle families of boards. Using a Cape add-on board,
you can easily add sensors, communication peripherals, and more.

Please visit BeagleBoard.org - Cape for the list of currently available Cape add-on boards.

In the BeagleBone board family, there are many variants, such as beagleboneblack-home, beaglebone-ai-
home, bbai64-home and compatibles such as SeeedStudio BeagleBone Green, SeeedStudio BeagleBone
Green Wireless, SeeedStudio BeagleBone Green Gateway and more.

The BeagleBone cape interface spec enables a common set of device tree overlays and software to be
utilized on each of these different BeagleBone boards.

Each hardware has different internal pin assignments and the number of peripherals in the SoC, but the
device tree overlay absorbs these differences.

The user of the Cape add-on boards are essentially able to use it across the corresponding Boards without
changing any code at all.

Find the instructions below on using each cape:

• BeagleBoard.org BeagleBone Relay Cape

2.3.1 BeagleBone cape interface spec

This page is a replica of BeagleBone cape interface spec page on elinux.

See this blog post on BeagleBoard.org for an introduction on Device Tree: Supporting Similar Boards -
The BeagleBone Example. This spreadsheet provides a summary of expansion header signals on various
BeagleBoard.org board designs. This provides information on Cape Expansion Headers for BeagleBone
designs.

Note: Below, when mentioning “Black”, this is true for all AM3358-based BeagleBone boards. “AI” is
AM5729-based. “AI-64” is TDA4VM-based.

60 Chapter 2. Boards

https://github.com/beagleboard/pocketbeagle/blob/master/regulatory/PocketBeagle_Export_Classification.pdf
https://beagleboard.org/support/rma
https://github.com/beagleboard/pocketbeagle/wiki
https://beagleboard.org/resources
https://beagleboard.org/capes
https://beagleboard.org/green
https://beagleboard.org/green-wireless
https://beagleboard.org/green-wireless
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec
https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers

BeagleBoard Docs, Release 0.0.9

Table 2.12: Overall
P8 P8
Func-
tions

odd even Func-
tions

Func-
tions

odd even Func-
tions

USB D+ E1 E2 USB D- • • • •

5V OUT E3 E4 GND • • • •

GND 1 2 GND GND 1 2 GND
3V3
OUT

3 4 3V3
OUT

D M 3 4 D M

5V IN 5 6 5V IN D M 5 6 D M
5V OUT 7 8 5V OUT C2r D 7 8 C2t D
PWR
BUT

9 10 RESET D 9 10 D

D U4r 11 12 D D P0o 11 12 D Q2a
P0o

D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c
S00

17 18 D I1d
S0o

D 17 18 D

C0r D
I2c

19 20 C0t D
I2d

D E2a 19 20 D M P1

D E0b
S0i U2t

21 22 D E0a
S0c U2r

D M P1 21 22 D M
Q2b

D S01 23 24 C1r D
I3c U1t

D M 23 24 D M

D P0 25 26 C1t D
I3d U1r

D M 25 26 D

D P0
Q0b

27 28 D P0
S10

D L P1 27 28 D L P1

D E S1i
P0

29 30 D P0
S1o

D L P1 29 30 D L P1

D E S1c
P0

31 32 ADC
VDD

D L 31 32 D L

A4 33 34 ADC
GND

D L Q1b 33 34 D E L

A6 35 36 A5 D L Q1a 35 36 D E L
A2 37 38 A3 D L U5t 37 38 D L U5r
A0 39 40 A1 D L P1 39 40 D L P1
D P0 41 42 D Q0a

S11 U3t
P0

D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

• A: ADC

• C: CAN

• D: Digital GPIO

• E: EHRPWM

• I: I2C

• L: LCD

• M: MMC/SDIO

2.3. Capes 61

BeagleBoard Docs, Release 0.0.9

• P: PRU

• Q: eQEP

• S: SPI

• U: UART

LEDs

The compatibility layer comes with simple reference nodes for attaching LEDs to any gpio pin. The
format followed for these nodes is led_P8_## / led_P9_##. The gpio-leds driver is used by these
reference nodes internally and allows users to easily create compatible led nodes in overlays for Black,
AI and AI-64. For the definitions, you can see bbai-bone-buses.dtsi#L16 & bbb-bone-buses.dtsi#L16.

Example overlays

Table 2.13: Bone LEDs Overlays
Header Pin Overlay
P8 3 BONE-LED_P8_03.dts
P9 11 BONE-LED_P9_11.dts

Definitions
Table 2.14: Bone LEDs

LED Header pin Black AI AI-64
/sys/class/leds/led_P8_03 P8_03 gpio1_6 gpio1_24 gpio0_20
/sys/class/leds/led_P8_04 P8_04 gpio1_7 gpio1_25 gpio0_48
/sys/class/leds/led_P8_05 P8_05 gpio1_2 gpio7_1 gpio0_33
/sys/class/leds/led_P8_06 P8_06 gpio1_3 gpio7_2 gpio0_34
/sys/class/leds/led_P8_07 P8_07 gpio2_2 gpio6_5 gpio0_15
/sys/class/leds/led_P8_08 P8_08 gpio2_3 gpio6_6 gpio0_14
/sys/class/leds/led_P8_09 P8_09 gpio2_5 gpio6_18 gpio0_17
/sys/class/leds/led_P8_10 P8_10 gpio2_4 gpio6_4 gpio0_16
/sys/class/leds/led_P8_11 P8_11 gpio1_13 gpio3_11 gpio0_60
/sys/class/leds/led_P8_12 P8_12 gpio1_12 gpio3_10 gpio0_59
/sys/class/leds/led_P8_13 P8_13 gpio0_23 gpio4_11 gpio0_89
/sys/class/leds/led_P8_14 P8_14 gpio0_26 gpio4_13 gpio0_75
/sys/class/leds/led_P8_15 P8_15 gpio1_15 gpio4_3 gpio0_61
/sys/class/leds/led_P8_16 P8_16 gpio1_14 gpio4_29 gpio0_62
/sys/class/leds/led_P8_17 P8_17 gpio0_27 gpio8_18 gpio0_3
/sys/class/leds/led_P8_18 P8_18 gpio2_1 gpio4_9 gpio0_4
/sys/class/leds/led_P8_19 P8_19 gpio0_22 gpio4_10 gpio0_88
/sys/class/leds/led_P8_20 P8_20 gpio1_31 gpio6_30 gpio0_76
/sys/class/leds/led_P8_21 P8_21 gpio1_30 gpio6_29 gpio0_30
/sys/class/leds/led_P8_22 P8_22 gpio1_5 gpio1_23 gpio0_5
/sys/class/leds/led_P8_23 P8_23 gpio1_4 gpio1_22 gpio0_31
/sys/class/leds/led_P8_24 P8_24 gpio1_1 gpio7_0 gpio0_6
/sys/class/leds/led_P8_25 P8_25 gpio1_0 gpio6_31 gpio0_35
/sys/class/leds/led_P8_26 P8_26 gpio1_29 gpio4_28 gpio0_51
/sys/class/leds/led_P8_27 P8_27 gpio2_22 gpio4_23 gpio0_71
/sys/class/leds/led_P8_28 P8_28 gpio2_24 gpio4_19 gpio0_72
/sys/class/leds/led_P8_29 P8_29 gpio2_23 gpio4_22 gpio0_73
/sys/class/leds/led_P8_30 P8_30 gpio2_25 gpio4_20 gpio0_74

continues on next page

62 Chapter 2. Boards

https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L16
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L16
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-LED_P8_03.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-LED_P9_11.dts

BeagleBoard Docs, Release 0.0.9

Table 2.14 – continued from previous page
LED Header pin Black AI AI-64
/sys/class/leds/led_P8_31 P8_31 gpio0_10 gpio8_14 gpio0_32
/sys/class/leds/led_P8_32 P8_32 gpio0_11 gpio8_15 gpio0_26
/sys/class/leds/led_P8_33 P8_33 gpio0_9 gpio8_13 gpio0_25
/sys/class/leds/led_P8_34 P8_34 gpio2_17 gpio8_11 gpio0_7
/sys/class/leds/led_P8_35 P8_35 gpio0_8 gpio8_12 gpio0_24
/sys/class/leds/led_P8_36 P8_36 gpio2_16 gpio8_10 gpio0_8
/sys/class/leds/led_P8_37 P8_37 gpio2_14 gpio8_8 gpio0_106
/sys/class/leds/led_P8_38 P8_38 gpio2_15 gpio8_9 gpio0_105
/sys/class/leds/led_P8_39 P8_39 gpio2_12 gpio8_6 gpio0_69
/sys/class/leds/led_P8_40 P8_40 gpio2_13 gpio8_7 gpio0_70
/sys/class/leds/led_P8_41 P8_41 gpio2_10 gpio8_4 gpio0_67
/sys/class/leds/led_P8_42 P8_42 gpio2_11 gpio8_5 gpio0_68
/sys/class/leds/led_P8_43 P8_43 gpio2_8 gpio8_2 gpio0_65
/sys/class/leds/led_P8_44 P8_44 gpio2_9 gpio8_3 gpio0_66
/sys/class/leds/led_P8_45 P8_45 gpio2_6 gpio8_0 gpio0_79
/sys/class/leds/led_P8_46 P8_46 gpio2_7 gpio8_1 gpio0_80
/sys/class/leds/led_P9_11 P9_11 gpio0_30 gpio8_17 gpio0_1
/sys/class/leds/led_P9_12 P9_12 gpio1_28 gpio5_0 gpio0_45
/sys/class/leds/led_P9_13 P9_13 gpio0_31 gpio6_12 gpio0_2
/sys/class/leds/led_P9_14 P9_14 gpio1_18 gpio4_25 gpio0_93
/sys/class/leds/led_P9_15 P9_15 gpio1_16 gpio3_12 gpio0_47
/sys/class/leds/led_P9_16 P9_16 gpio1_19 gpio4_26 gpio0_94
/sys/class/leds/led_P9_17 P9_17 gpio0_5 gpio7_17 gpio0_28
/sys/class/leds/led_P9_18 P9_18 gpio0_4 gpio7_16 gpio0_40
/sys/class/leds/led_P9_19 P9_19 gpio0_13 gpio7_3 gpio0_78
/sys/class/leds/led_P9_20 P9_20 gpio0_12 gpio7_4 gpio0_77
/sys/class/leds/led_P9_21 P9_21 gpio0_3 gpio3_3 gpio0_39
/sys/class/leds/led_P9_22 P9_22 gpio0_2 gpio6_19 gpio0_38
/sys/class/leds/led_P9_23 P9_23 gpio1_17 gpio7_11 gpio0_10
/sys/class/leds/led_P9_24 P9_24 gpio0_15 gpio6_15 gpio0_13
/sys/class/leds/led_P9_25 P9_25 gpio3_21 gpio6_17 gpio0_127
/sys/class/leds/led_P9_26 P9_26 gpio0_14 gpio6_14 gpio0_12
/sys/class/leds/led_P9_27 P9_27 gpio3_19 gpio4_15 gpio0_46
/sys/class/leds/led_P9_28 P9_28 gpio3_17 gpio4_17 gpio1_11
/sys/class/leds/led_P9_29 P9_29 gpio3_15 gpio5_11 gpio0_53
/sys/class/leds/led_P9_30 P9_30 gpio3_16 gpio5_12 gpio0_44
/sys/class/leds/led_P9_31 P9_31 gpio3_14 gpio5_10 gpio0_52
/sys/class/leds/led_P9_33 P9_33 NA NA gpio0_50
/sys/class/leds/led_P9_35 P9_35 NA NA gpio0_55
/sys/class/leds/led_P9_36 P9_36 NA NA gpio0_56
/sys/class/leds/led_P9_37 P9_37 NA NA gpio0_57
/sys/class/leds/led_P9_38 P9_38 NA NA gpio0_58
/sys/class/leds/led_P9_39 P9_39 NA NA gpio0_54
/sys/class/leds/led_P9_40 P9_40 NA NA gpio0_81
/sys/class/leds/led_P9_41 P9_41 gpio0_20 gpio6_20 gpio1_0
/sys/class/leds/led_P9_91 P9_91 gpio3_20 NA NA
/sys/class/leds/led_P9_42 P9_42 gpio0_7 gpio4_18 gpio0_123
/sys/class/leds/led_P9_92 P9_92 gpio3_18 NA NA
/sys/class/leds/led_A15 A15 gpio0_19 NA NA

2.3. Capes 63

BeagleBoard Docs, Release 0.0.9

I2C

Compatibility layer provides simple I2C bone bus nodes for creating compatible overlays for Black, AI
and AI-64. The format followed for these nodes is ‘”bone_i2c_#”’. For the definitions, you can see
bbai-bone-buses.dtsi#L388 & bbb-bone-buses.dtsi#L403.

Table 2.15: Bone bus I2C
SYSFS DT sym-

bol
Black AI AI-64 SCL SDA Overlay

/dev/bone/i2c/0bone_i2c_0 I2C0 I2C1 TBD NA (On-board)
/dev/bone/i2c/1bone_i2c_1 I2C1 I2C5 MAIN_I2C6 P9.17 P9.18 BONE-

I2C1.dts
/dev/bone/i2c/2bone_i2c_2 I2C2 I2C4 MAIN_I2C3 P9.19 P9.20 BONE-

I2C2.dts
/dev/bone/i2c/2abone_i2c_2a I2C2 N/A TBD P9.21 P9.22 BONE-

I2C2A.dts
/dev/bone/i2c/3bone_i2c_3 I2C1 I2C3 MAIN_I2C4 P9.24 P9.26 BONE-

I2C3.dts

SPI

SPI bone bus nodes allow creating compatible overlays for Black, AI and AI-64. For the definitions, you
can see bbai-bone-buses.dtsi#L406 & bbb-bone-buses.dtsi#L423.

Table 2.16: Bone bus SPI
Bone
bus

DT
symbol

Black AI AI-64 SDO SDI CLK CS Overlay

/dev/bone/spi/0.xbone_spi_0SPI0 SPI2 MAIN_SPI6P9.18 P9.21 P9.22 •
P9.17
(CS0)

•
P9.23
(CS1
-
BBAI
and
BBAI64
only)

•
BONE-
SPI0_0.dts

•
BONE-
SPI0_0.dts

/dev/bone/spi/1.xbone_spi_1SPI1 SPI3 MAIN_SPI7P9.30 P9.29 P9.31 •
P9.28
(CS0)

•
P9.42
(CS1)

•
BONE-
SPI0_0.dts

•
BONE-
SPI0_0.dts

UART

UART bone bus nodes allow creating compatible overlays for Black, AI and AI-64. For the definitions,
you can see bbai-bone-buses.dtsi#L367 & bbb-bone-buses.dtsi#L382

64 Chapter 2. Boards

https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L388
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L403
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C2A.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C2A.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_i2c/src/arm/BONE-I2C3.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L406
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L423
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI0_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI0_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI0_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI0_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI1_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI1_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI1_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_spi/src/arm/BONE-SPI1_1.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L367
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L382

BeagleBoard Docs, Release 0.0.9

Table 2.17: Bone bus UART
Bone bus Black AI AI-64 TX RX RTSn CTSn Overlays
/dev/bone/uart/0UART0 UART1 MAIN_UART0NA (console debug header pins)
/dev/bone/uart/1UART1 UART10 MAIN_UART2P9.24 P9.26 P9.19

P8.4
(N/A on
AM3358)

P9.20
P8.3
(N/A on
AM3358)

BONE-
UART1.dts

/dev/bone/uart/2UART2 UART3 • P9.21 P9.22 P8.38
(N/A on
AM5729)

P8.37
(N/A on
AM5729)

BONE-
UART2.dts

/dev/bone/uart/3UART3 • • P9.42 NA | - • BONE-
UART3.dts

/dev/bone/uart/4UART4 UART5 MAIN_UART0
(con-
sole)

P9.13 P9.11 P8.33
(N/A on
AM5729)
P8.6
(N/A on
AM3358)

P8.35
(N/A on
AM5729)
P8.5
(N/A on
AM3358)

BONE-
UART4.dts

/dev/bone/uart/5UART5 UART8 MAIN_UART5P8.37 P8.38 P8.32 P8.31 BONE-
UART5.dts

CAN

CAN bone bus nodes allow creating compatible overlays for Black, AI and AI-64. For the definitions, you
can see bbai-bone-buses.dtsi#L440 & bbb-bone-buses.dtsi#L457.

Table 2.18: Bone bus CAN
Bone bus Black AI AI-64 TX RX Overlays
/dev/bone/can/0CAN0 • MAIN_MCAN0P9.20 P9.19 BONE-

CAN0.dts

/dev/bone/can/1CAN1 CAN2 MAIN_MCAN4P9.26 P9.24 BONE-
CAN1.dts

/dev/bone/can/2 • CAN1 (rev
A2 and
later)

TBD P8.8 P8.7

ADC

• TODO: We need a udev rule to make sure the ADC shows up at /dev/bone/adc! There’s nothing
for sure that IIO devices will show up in the same place.

• TODO: I think we can also create symlinks for each channel based on which device is there, such
that we can do /dev/bone/adc/Px_y

Table 2.19: Bone ADC
Index Header pin Black/AI-64 AI
0 P9_39 in_voltage0_raw in_voltage0_raw
1 P9_40 in_voltage1_raw in_voltage1_raw
2 P9_37 in_voltage2_raw in_voltage3_raw
3 P9_38 in_voltage3_raw in_voltage2_raw
4 P9_33 in_voltage4_raw in_voltage7_raw
5 P9_36 in_voltage5_raw in_voltage6_raw
6 P9_35 in_voltage6_raw in_voltage4_raw

2.3. Capes 65

https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART5.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_uart/src/arm/BONE-UART5.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L440
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L457
https://github.com/lorforlinux/bb.org-overlays/blob/bone_can/src/arm/BONE-CAN0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_can/src/arm/BONE-CAN0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_can/src/arm/BONE-CAN1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_can/src/arm/BONE-CAN1.dts

BeagleBoard Docs, Release 0.0.9

Table 2.20: Bone ADC Overlay
Black AI AI-64 overlay
Internal External (STMPE811) TBD BONE-ADC.dts

PWM

PWM bone bus nodes allow creating compatible overlays for Black, AI and AI-64. For the definitions,
you can see bbai-bone-buses.dtsi#L415 & bbb-bone-buses.dtsi#L432

Table 2.21: Bone bus PWM
Bone bus Black AI AI-64 A B Overlay
/dev/bone/pwm/0PWM0 • PWM1 P9.22 P9.21 BONE-

PWM0.dts

/dev/bone/pwm/1PWM1 PWM3 PWM2 P9.14 P9.16 BONE-
PWM1.dts

/dev/bone/pwm/2PWM2 PWM2 PWM0 P8.19 P8.13 BONE-
PWM2.dts

TIMER PWM

TIMER PWM bone bus uses ti,omap-dmtimer-pwm driver, and timer nodes that allow creating compatible
overlays for Black, AI and AI-64. For the timer node definitions, you can see bbai-bone-buses.dtsi#L449
& bbb-bone-buses.dtsi#L466.

Table 2.22: Bone TIMER PWMs
Bone bus Header pin Black AI overlay
/sys/bus/platform/devices/bone_timer_pwm_0/P8.10 timer6 timer10 BONE-

TIMER_PWM_0.dts
/sys/bus/platform/devices/bone_timer_pwm_1/P8.07 timer4 timer11 BONE-

TIMER_PWM_1.dts
/sys/bus/platform/devices/bone_timer_pwm_2/P8.08 timer7 timer12 BONE-

TIMER_PWM_2.dts
/sys/bus/platform/devices/bone_timer_pwm_3/P9.21 • timer13 BONE-

TIMER_PWM_3.dts

/sys/bus/platform/devices/bone_timer_pwm_4/P8.09 timer5 timer14 BONE-
TIMER_PWM_4.dts

/sys/bus/platform/devices/bone_timer_pwm_5/P9.22 • timer15 BONE-
TIMER_PWM_5.dts

eCAP

#TODO: This doesn’t include any abstraction yet.

Table 2.23: Black eCAP PWMs
Bone bus Header

pin
peripheral overlay

/sys/bus/platform/drivers/ecap/48302100.ecap P9.42 eCAP0_in_PWM0_out BBB-
ECAP0.dts

/sys/bus/platform/drivers/ecap/48304100.ecap P9.28 eCAP2_in_PWM2_out BBB-
ECAP2.dts

66 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-ADC.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L415
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L432
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L449
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L466
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP0.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP0.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP2.dts

BeagleBoard Docs, Release 0.0.9

Table 2.24: AI eCAP PWMs
Bone bus Header

pin
peripheral overlay

/sys/bus/platform/drivers/ecap/4843e100.ecapP8.15 eCAP1_in_PWM1_out BBAI-ECAP1.dts
/sys/bus/platform/drivers/ecap/48440100.ecapP8.14 eCAP2_in_PWM2_out BBAI-ECAP2.dts
/sys/bus/platform/drivers/ecap/48440100.ecapP8.20 eCAP2_in_PWM2_out BBAI-

ECAP2A.dts
/sys/bus/platform/drivers/ecap/48442100.ecapP8.04 eCAP3_in_PWM3_out BBAI-ECAP3.dts
/sys/bus/platform/drivers/ecap/48442100.ecapP8.26 eCAP3_in_PWM3_out BBAI-

ECAP3A.dts

eMMC

Table 2.25: Bone eMMC
Header pin Description
P8.3 DAT6
P8.4 DAT7
P8.5 DAT2
P8.6 DAT3
P8.20 CMD
P8.21 CLK
P8.22 DAT5
P8.23 DAT4
P8.24 DAT1
P8.25 DAT0

Table 2.26: Bone eMMC Overlay
Black AI overlay
MMC2 MMC3 BONE-eMMC.dts

2.3. Capes 67

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP1.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-eMMC.dts

BeagleBoard Docs, Release 0.0.9

LCD

Table 2.27: 16bit LCD interface
Header pin Description
P8_45 lcd_data0
P8_46 lcd_data1
P8_43 lcd_data2
P8_44 lcd_data3
P8_41 lcd_data4
P8_42 lcd_data5
P8_39 lcd_data6
P8_40 lcd_data7
P8_37 lcd_data8
P8_38 lcd_data9
P8_36 lcd_data10
P8_34 lcd_data11
P8_35 lcd_data12
P8_33 lcd_data13
P8_31 lcd_data14
P8_32 lcd_data15
P8_27 lcd_vsync
P8_29 lcd_hsync
P8_28 lcd_pclk
P8_30 lcd_ac_bias_en

Table 2.28: 16bit LCD interface Overlay
Black AI overlay
lcdc dss

eQEP

On BeagleBone’s without an eQEP on specific pins, consider using the PRU to perform a software counter
function.

68 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Table 2.29: Bone eQEP
Bone bus Black AI AI-64 A B strobe index overlay
/dev/bone/counter/0eQEP0 eQEP2 eQEP0 P9.42 P9.27 •

Black/AI-
64:
P9.25

• AI:
P8.06

•
Black/AI-
64:
P9.41

• AI:
P8.05

/dev/bone/counter/1eQEP1 eQEP0 eQEP1 P8.35 P8.33 •
Black/AI-
64:
P8.32

• AI:
P9.21

•
Black/AI-
64:
P8.31

• AI:
–

/dev/bone/counter/2eQEP2 eQEP1 – P8.12 P8.22 •
Black:
P8.15

• AI:
P8.18

•
Black:
P8.16

• AI:
P9.15

McASP

Table 2.30: Bone McASP0
Header pin Description
P9.12 aclkr
P9.25 ahclkx
P9.27 fsr
P9.28 Black: axr2 AI: axr9
P9.29 fsx
P9.30 Black: axr0 AI: axr10
P9.31 aclkx

Table 2.31: Bone McASP0 Overlay
Black AI overlay
McASP0 McASP1

PRU

The overlay situation for PRUs is a bit more complex than with other peripherals. The mechanism
for loading, starting and stopping the PRUs can go through either [https://www.kernel.org/doc/
html/latest/driver-api/uio-howto.html UIO] or [https://software-dl.ti.com/processor-sdk-linux/esd/
docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
RemoteProc].

• /dev/remoteproc/prussX-coreY (AM3358 X = “”, other x = “1|2”)

2.3. Capes 69

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html

BeagleBoard Docs, Release 0.0.9

Table 2.32: Bone PRU eCAP
Header Pin Black AI
P8.15 pr1_ecap0 pr1_ecap0
P8.32 • pr2_ecap0

P9.42 pr1_ecap0 •

Table 2.33: AI PRU UART
UART TX RX RTSn CTSn Overlays
PRU1 UART0 P8_31 P8_33 P8_34 P8_35
PRU2 UART0 P8_43 P8_44 P8_45 P8_46

Table 2.34: Bone PRU
Header Pin Black AI
P8.03

•
pr2_pru0 10

P8.04
•

pr2_pru0 11

P8.05
•

pr2_pru0 06

P8.06
•

pr2_pru0 07

P8.07
•

pr2_pru1 16

P8.08
•

pr2_pru0 20

P8.09
•

pr2_pru1 06

P8.10
•

pr2_pru1 15

P8.11 pr1_pru0 15 (Out) pr1_pru0 04
P8.12 pr1_pru0 14 (Out) pr1_pru0 03
P8.13

•
pr1_pru1 07

P8.14
•

pr1_pru1 09

P8.15 pr1_pru0 15 (In) pr1_pru1 16
P8.16 pr1_pru0 14 (In) pr1_pru1 18
P8.17

•
pr2_pru0 15

continues on next page

70 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Table 2.34 – continued from previous page
Header Pin Black AI
P8.18

•
pr1_pru1 05

P8.19
•

pr1_pru1 06

P8.20
•

pr2_pru0 03

P8.21
•

pr2_pru0 02

P8.22
•

pr2_pru0 09

P8.23
•

pr2_pru0 08

P8.24
•

pr2_pru0 05

P8.25
•

pr2_pru0 04

P8.26
•

pr1_pru1 17

P8.27
•

pr2_pru1 17

P8.28
•

pr2_pru0 17

P8.29
•

pr2_pru0 18

P8.30
•

pr2_pru0 19

P8.31
•

pr2_pru0 11

P8.32
•

pr2_pru1 00

P8.33
•

pr2_pru0 10

P8.34
•

pr2_pru0 08

P8.35
•

pr2_pru0 09

continues on next page

2.3. Capes 71

BeagleBoard Docs, Release 0.0.9

Table 2.34 – continued from previous page
Header Pin Black AI
P8.36

•
pr2_pru0 07

P8.37
•

pr2_pru0 05

P8.38
•

pr2_pru0 06

P8.39
•

pr2_pru0 03

P8.40
•

pr2_pru0 04

P8.41
•

pr2_pru0 01

P8.42
•

pr2_pru0 02

P8.43
•

pr2_pru1 20

P8.44
•

pr2_pru0 00

P8.45
•

pr2_pru1 18

P8.46
•

pr2_pru1 19

P9.11
•

pr2_pru0 14

P9.13
•

pr2_pru0 15

P9.14
•

pr1_pru1 14

P9.15
•

pr1_pru0 5

P9.16
•

pr1_pru1 15

P9.17
•

pr2_pru1 09

P9.18
•

pr2_pru1 08

continues on next page

72 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

Table 2.34 – continued from previous page
Header Pin Black AI
P9.19

•
pr1_pru1 02

P9.20
•

pr1_pru1 01

P9.24 pr1_pru0 16 (In)
•

P9.25 pr1_pru0 07 pr2_pru1 05
P9.26 pr1_pru1 16 (In) pr1_pru0 17
P9.27 pr1_pru0 05 pr1_pru1 11
P9.28 pr1_pru0 03 pr2_pru1 13
P9.29 pr1_pru0 01 pr2_pru1 11
P9.30 pr1_pru0 02 pr2_pru1 12
P9.31 pr1_pru0 00 pr2_pru1 10
P9.41 pr1_pru0 06 pr1_pru1 03
P9.42 pr1_pru0 04 pr1_pru1 10

GPIO

TODO
 For each of the pins with a GPIO, there should be a symlink that comes from the names *

Methodology

The methodology for applied in the kernel and software images to expose the software interfaces is to be
documented here. The most fundamental elements are the device tree entries, including overlays, and
udev rules.

Device Trees

udev rules

10-of-symlink.rules

#From: https://github.com/mvduin/py-uio/blob/master/etc/udev/rules.d/10-of-symlink.
→˓rules
allow declaring a symlink for a device in DT
ATTR{device/of_node/symlink}!="", \

ENV{OF_SYMLINK}="%s {device/of_node/symlink}"

ENV{OF_SYMLINK}!="", ENV{DEVNAME}!="", \
SYMLINK+="%E {OF_SYMLINK} ", \
TAG+="systemd", ENV{SYSTEMD_ALIAS}+="/dev/%E {OF_SYMLINK} "

TBD

Also courtesy of mvduin
create symlinks for gpios exported to sysfs by DT
SUBSYSTEM=="gpio", ACTION=="add", TEST=="value", ATTR{label}!="sysfs", \

RUN+="/bin/mkdir -p /dev/bone/gpio", \
RUN+="/bin/ln -sT '/sys/class/gpio/%k' /dev/bone/gpio/%s {label} "

2.3. Capes 73

BeagleBoard Docs, Release 0.0.9

Verification

TODO: The steps used to verify all of these configurations is to be documented here. It will serve to
document what has been tested, how to reproduce the configurations, and how to verify each major
triannual release. All faults will be documented in the issue tracker.

References

• Device Tree: Supporting Similar Boards - The BeagleBone Example

• Google drive with summary of expansion signals on various BeagleBoard.org designs

• Beagleboard:Cape Expansion Headers

2.3.2 BeagleBoard.org BeagleBone Relay Cape

Relay Cape, as the name suggests, is a simple Cape with a relay on it. It contains four relays, each of
which can be operated independently from the BeagleBone.

• Order page

• Schematic

Note: The following describes how to use the device tree overlay under development. The description
may not be suitable for those using older firmware.

Installation

No special configuration is required. When you plug Cape into your BeagleBoard, it is automatically
recognized by the Cape Universal function.

You can check to see if Relay Cape is recognized with the following command.

ls /proc/device-tree/chosen/overlay

A list of currently loaded device tree overlays is displayed here. If you see BBORG_RELAY-00A2.kernel in
this list, it has been loaded correctly.

74 Chapter 2. Boards

https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers
https://beagleboard.org/capes#relay
https://git.beagleboard.org/beagleboard/capes/-/tree/master/beaglebone/Relay

BeagleBoard Docs, Release 0.0.9

If it is not loaded correctly, you can also load it directly by adding the following to the U-Boot options
(which can be reflected by changing /boot/uEnv.txt).

uboot_overlay_addr0=BBORG_RELAY-00A2.dtbo

Usage

ls /sys/class/leds

The directory “relay*” exists in the following directory. The LEDs can be controlled by modifying the files
in this directory.

echo 1 > relay1/brightness

This allows you to adjust the brightness; entering 1 for brightness turns it ON, and entering 0 for OFF.

The four relays can be changed individually by changing the number after “relay.

2.4 BeagleConnect

BeagleConnect™ is a revolutionary technology virtually eliminating low-level software development for
IoT and IIoT applications, such as building automation, factory automation, home automation, and sci-
entific data acquisition. While numerous IoT and IIoT solutions available today provide massive software
libraries for microcontrollers supporting a limited body of sensors, actuators and indicators as well as
libraries for communicating over various networks, BeagleConnect simply eliminates the need for these
libraries by shifting the burden into the most massive and collaborative software project of all time, the
Linux kernel.

These are the tools used to automate things in scientific data collection, data science, mechatronics, and
IoT.

2.4. BeagleConnect 75

https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Industrial_internet_of_things
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Indicator_(distance_amplifying_instrument)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Data_collection_system
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Mechatronics
https://en.wikipedia.org/wiki/Internet_of_things

BeagleBoard Docs, Release 0.0.9

BeagleConnect™ technology solves:

• The need to write software to add a large set of diverse devices to your system,

• The need to maintain the software with security updates,

• The need to rapidly prototype using off-the-shelf software and hardware without wiring,

• The need to connect to devices using long-range, low-power wireless, and

• The need to produce high-volume custom hardware cost-optimized for your requirements.

2.4.1 BeagleConnect Technology

This is the deep-dive introduction to BeagleConnect™ technology and software architecture.

Note: This documentation and the associated software are each a work-in-progress.

BeagleConnect™ is built using Greybus code in the Linux kernel originally designed for mobile phones.
To understand a bit more about how the BeagleConnect™ Greybus stack is being built, this section helps
describe the development currently in progress and the principles of operation.

76 Chapter 2. Boards

https://kernel-recipes.org/en/2015/talks/an-introduction-to-greybus/

BeagleBoard Docs, Release 0.0.9

Background

BeagleConnect™ uses Greybus and updated Click Boards with identifiers to eliminate the need to add
and manually configure devices added onto the Linux system.

High-level

• For Linux nerds: Think of BeagleConnect™ as 6LoWPAN over 802.15.4-based Greybus (instead of
Unipro as used by Project Ara), where every BeagleConnect™ board shows up as new SPI, I2C,
UART, PWM, ADC, and GPIO controllers that can now be probed to load drivers for the sensors or
whatever is connected to them. (Proof of concept of Greybus over TCP/IP: https://www.youtube.
com/watch?v=7H50pv-4YXw)

• For MCU folks: Think of BeagleConnect™ as a Firmata-style firmware load that exposes the inter-
faces for remote access over a secured wireless network. However, instead of using host software
that knows how to speak the Firmata protocol, the Linux kernel speaks the slightly similar Grey-
bus protocol to the MCU and exposes the device generically to users using a Linux kernel driver.
Further, the Greybus protocol is spoken over 6LoWPAN on 802.15.4.

2.4. BeagleConnect 77

https://www.youtube.com/watch?v=7H50pv-4YXw
https://www.youtube.com/watch?v=7H50pv-4YXw

BeagleBoard Docs, Release 0.0.9

Software architecture

TODO items

• Linux kernel driver (wpanusb and bcfserial still need to be upstreamed)

• Provisioning

• Firmware for host CC13x

• Firmware for device CC13x

• Unify firmware for host/device CC13x

• Click Board drivers and device tree formatted metadata for 100 or so Click Boards

• Click Board plug-ins for node-red for the same 100 or so Click Boards

• BeagleConnect™ Freedom System Reference Manual and FAQs

Associated pre-work

• Click Board support for Node-RED can be executed with native connections on PocketBea-
gle+TechLab and BeagleBone Black with mikroBUS Cape

• Device tree fragments and driver updates can be provided via https://bbb.io/click

• The Kconfig style provisioning can be implemented for those solutions, which will require a reboot.
We need to centralize edits to /boot/uEnv.txt to be programmatic. As I think through this, I don’t
think BeagleConnect is impacted, because the Greybus-style discovery along with Click EEPROMS
will eliminate any need to edit /boot/uEnv.txt.

78 Chapter 2. Boards

https://bbb.io/click

BeagleBoard Docs, Release 0.0.9

User experience concerns

• Make sure no reboots are required

• Plugging BeagleConnect into host should trigger host configuration

• Click EEPROMs should trigger loading whatever drivers are needed and provisioning should load
any new drivers

• Userspace (spidev, etc.) drivers should unload cleanly when 2nd phase provisioning is completed

2.4.2 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom

BeagleConnect™ Freedom runs a subGHz IEEE 802.15.4 network. This BeagleConnect™ Greybus demo
shows how to interact with GPIO, I2C and mikroBUS add-on boards remotely connected over a Beagle-
Connect™ Freedom.

This section starts with the steps required to use Linux embedded computer (BeagleBone Green Gateway)
and the Greybus protocol, over an IEEE 802.15.4 wireless link, to blink an LED on a Zephyr device.

Introduction

Why??

Good question. Blinking an LED is kind of the Hello, World of the hardware community. In this case,
we’re less interested in the mechanics of switching a GPIO to drive some current through an LED and
more interested in how that happens with the Internet of Things (IoT).

There are several existing network and application layers that are driven by corporate heavyweights and
industry consortiums, but relatively few that are community driven and, more specifically, even fewer
that have the ability to integrate so tightly with the Linux kernel.

The goal here is to provide a community-maintained, developer-friendly, and open-source protocol for
the Internet of Things using the Greybus Protocol, and blinking an LED using Greybus is the simplest
proof-of-concept for that. All that is required is a reliable transport.

1. Power a BeagleConnect Freedom that has not yet been programmed via a USB power source, not
the BeagleBone Green Gateway. You’ll hear a click every 1-2 seconds along with seeing 4 of the
LEDs turn off and on.

2. In an isolated terminal window, sudo beagleconnect-start-gateway

3. sensortest-rx.py

Every 1-2 minutes, you should see something like:

('fe80::3111:7a22:4b:1200%lo wpan0', 52213, 0, 13) '2l:7.79;'
('fe80::3111:7a22:4b:1200%lo wpan0', 52213, 0, 13) '4h:43.75;4t:23.11;'

The value after “2l:” is the amount of light in lux. The value after “4h:” is the relative humidity and after
“4t:” is the temperature in Celsius.

Flash BeagleConnect™ Freedom node device with Greybus firmware

#TODO: How can we add a step in here to show the network is connected without needing gbridge to
be fully functional?

Do this from the BeagleBone® Green Gateway board that was previously used to program the Beagle-
Connect™ Freedom gateway device:

1. Disconnect the BeagleConnect™ Freedom gateway device

2.4. BeagleConnect 79

https://en.wikipedia.org/wiki/Linux
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://lwn.net/Articles/715955/
https://zephyrproject.org/
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Internet_of_things

BeagleBoard Docs, Release 0.0.9

2. Connect a new BeagleConnect™ Freedom board via USB

3. sudo systemctl stop lowpan.service

4. cc2538-bsl.py /usr/share/beagleconnect/cc1352/greybus_mikrobus_beagleconnect.bin
/dev/ttyACM0

5. After it finishes programming successfully, disconnect the BeagleConnect Freedom node device

6. Power the newly programmed BeagleConnect Freedom node device from an alternate USB power
source

7. Reconnect the BeagleConnect Freedom gateway device to the BeagleBone Green Gateway

8. sudo systemctl start lowpan.service

9. sudo beagleconnect-start-gateway

debian@beaglebone:~$ sudo beagleconnect-start-gateway
[sudo] password for debian:
setting up wpanusb gateway for IEEE 802154 CHANNEL 1(906 Mhz)
ping6: Warning: source address might be selected on device other than lowpan0.
PING 2001:db8::1(2001:db8::1) from ::1 lowpan0: 56 data bytes
64 bytes from 2001:db8::1: icmp_seq=2 ttl=64 time=185 ms
64 bytes from 2001:db8::1: icmp_seq=3 ttl=64 time=40.9 ms
64 bytes from 2001:db8::1: icmp_seq=4 ttl=64 time=40.9 ms
64 bytes from 2001:db8::1: icmp_seq=5 ttl=64 time=40.6 ms

--- 2001:db8::1 ping statistics ---
5 packets transmitted, 4 received, 20% packet loss, time 36ms
rtt min/avg/max/mdev = 40.593/76.796/184.799/62.356 ms
debian@beaglebone:~$ iio_info
Library version: 0.19 (git tag: v0.19)
Compiled with backends: local xml ip usb serial
IIO context created with local backend.
Backend version: 0.19 (git tag: v0.19)
Backend description string: Linux beaglebone 5.14.18-bone20 #1buster PREEMPT Tue Nov␣
→˓16 20:47:19 UTC 2021 armv7l
IIO context has 1 attributes:

local,kernel: 5.14.18-bone20
IIO context has 3 devices:

iio:device0: TI-am335x-adc.0.auto (buffer capable)
8 channels found:

voltage0: (input, index: 0, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 1412
voltage1: (input, index: 1, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 2318
voltage2: (input, index: 2, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 2631
voltage3: (input, index: 3, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 817
voltage4: (input, index: 4, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 881
voltage5: (input, index: 5, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 0
(continues on next page)

80 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

voltage6: (input, index: 6, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 0
voltage7: (input, index: 7, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 1180
2 buffer-specific attributes found:

attr 0: data_available value: 0
attr 1: watermark value: 1

iio:device1: hdc2010
3 channels found:

humidityrelative: (input)
3 channel-specific attributes found:

attr 0: peak_raw value: 52224
attr 1: raw value: 52234
attr 2: scale value: 1.525878906

current: (output)
2 channel-specific attributes found:

attr 0: heater_raw value: 0
attr 1: heater_raw_available value: 0 1

temp: (input)
4 channel-specific attributes found:

attr 0: offset value: -15887.515151
attr 1: peak_raw value: 25600
attr 2: raw value: 25628
attr 3: scale value: 2.517700195

iio:device2: opt3001
1 channels found:

illuminance: (input)
2 channel-specific attributes found:

attr 0: input value: 79.040000
attr 1: integration_time value: 0.800000

2 device-specific attributes found:
attr 0: current_timestamp_clock value: realtime

attr 1: integration_time_available value: 0.1 0.8
debian@beaglebone:~$ dmesg | grep -e mikrobus -e greybus
[100.491253] greybus 1-2.2: Interface added (greybus)
[100.491294] greybus 1-2.2: GMP VID=0x00000126, PID=0x00000126
[100.491306] greybus 1-2.2: DDBL1 Manufacturer=0x00000126, Product=0x00000126
[100.737637] greybus 1-2.2: excess descriptors in interface manifest
[102.475168] mikrobus:mikrobus_port_gb_register: mikrobus gb_probe , num cports= 2,␣
→˓manifest_size 192
[102.475206] mikrobus:mikrobus_port_gb_register: protocol added 3
[102.475214] mikrobus:mikrobus_port_gb_register: protocol added 2
[102.475239] mikrobus:mikrobus_port_register: registering port mikrobus-1
[102.475400] mikrobus_manifest:mikrobus_state_get: mikrobus descriptor not found
[102.475417] mikrobus_manifest:mikrobus_manifest_attach_device: parsed device 1,␣
→˓driver=opt3001, protocol=3, reg=44
[102.494516] mikrobus_manifest:mikrobus_manifest_attach_device: parsed device 2,␣
→˓driver=hdc2010, protocol=3, reg=41
[102.494567] mikrobus_manifest:mikrobus_manifest_parse: (null) manifest parsed␣
→˓with 2 devices
[102.494592] mikrobus mikrobus-1: registering device : opt3001
[102.495096] mikrobus mikrobus-1: registering device : hdc2010
debian@beaglebone:~$

2.4. BeagleConnect 81

BeagleBoard Docs, Release 0.0.9

#TODO: update the below for the built-in sensors

#TODO: can we also handle the case where these sensors are included and recommend them? Same
firmware?

#TODO: the current demo is for the built-in sensors, not the Click boards mentioned below

Currently only a limited number of add-on boards have been tested to work over Greybus, simple add-on
boards without interrupt requirement are the ones that work currently. The example is for Air Quality 2
Click and Weather Click attached to the mikroBUS ports on the device side.

/var/log/gbridge will have the gbridge log, and if the mikroBUS port has been instantiated successfully
the kernel log will show the devices probe messages:

#TODO: this log needs to be updated

greybus 1-2.2: GMP VID=0x00000126, PID=0x00000126
greybus 1-2.2: DDBL1 Manufacturer=0x00000126, Product=0x00000126
greybus 1-2.2: excess descriptors in interface manifest
mikrobus:mikrobus_port_gb_register: mikrobus gb_probe , num cports= 3, manifest_size␣
→˓252
mikrobus:mikrobus_port_gb_register: protocol added 11
mikrobus:mikrobus_port_gb_register: protocol added 3
mikrobus:mikrobus_port_gb_register: protocol added 2
mikrobus:mikrobus_port_register: registering port mikrobus-0
mikrobus_manifest:mikrobus_manifest_attach_device: parsed device 1, driver=bme280,␣
→˓protocol=3, reg=76
mikrobus_manifest:mikrobus_manifest_attach_device: parsed device 2, driver=ams-iaq-
→˓core, protocol=3, reg=5a
mikrobus_manifest:mikrobus_manifest_parse: Greybus Service Sample Application␣
→˓manifest parsed with 2 devices
mikrobus mikrobus-0: registering device : bme280
mikrobus mikrobus-0: registering device : ams-iaq-core

#TODO: bring in the GPIO toggle and I2C explorations for greater understanding

Flashing via a Linux Host

If flashing the Freedom board via the BeagleBone fails here’s a trick you can try to flash from a Linux
host.

Use sshfs to mount the Bone’s files on the Linux host. This assumes the Bone is plugged in the the USB
and appears at 192.168.7.2:

host$ cd
host$ sshfs 192.168.7.2:/ bone
host$ cd bone; ls
bin dev home lib media opt root sbin sys usr
boot etc ID.txt lost+found mnt proc run srv tmp var
host$ ls /dev/ttyACM*
/dev/ttyACM1

The Bone’s files now appear as local files. Notice there is already a /dev/ACM* appearing. Now plug the
Connect into the Linux host’s USB port and run the command again.

host$ ls /dev/ttyACM*
/dev/ttyACM0 /dev/ttyACM1

The /dev/ttyACM that just appeared is the one associated with the Connect. In my case it’s /dev/
ttyACM0. That’s what I’ll use in this example.

Now change directories to where the binaries are and load:

82 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

host$ cd ~/bone/usr/share/beagleconnect/cc1352;ls
greybus_mikrobus_beagleconnect.bin sensortest_beagleconnect.dts
greybus_mikrobus_beagleconnect.config wpanusb_beagleconnect.bin
greybus_mikrobus_beagleconnect.dts wpanusb_beagleconnect.config
sensortest_beagleconnect.bin wpanusb_beagleconnect.dts
sensortest_beagleconnect.config

host$ ~/bone/usr/bin/cc2538-bsl.py sensortest_beagleconnect.bin /dev/ttyACM0
8-bsl.py sensortest_beagleconnect.bin /dev/ttyACM0
Opening port /dev/ttyACM0, baud 50000
Reading data from sensortest_beagleconnect.bin
Cannot auto-detect firmware filetype: Assuming .bin
Connecting to target...
CC1350 PG2.0 (7x7mm): 352KB Flash, 20KB SRAM, CCFG.BL_CONFIG at 0x00057FD8
Primary IEEE Address: 00:12:4B:00:22:7A:10:46

Performing mass erase
Erasing all main bank flash sectors

Erase done
Writing 360448 bytes starting at address 0x00000000
Write 104 bytes at 0x00057F988

Write done
Verifying by comparing CRC32 calculations.

Verified (match: 0x0f6bdf0f)

Now you are ready to continue the instructions above after the cc2528 command.

Trying for different add-on boards See mikroBUS over Greybus for trying out the same example for
different mikroBUS add-on boards/ on-board devices.

Observe the node device

Connect BeagleConnect Freedom node device to an Ubuntu laptop to observe the Zephyr console.

Console (tio)

In order to see diagnostic messages or to run certain commands on the Zephyr device we will require a
terminal open to the device console. In this case, we use tio due how its usage simplifies the instructions.

1. Install tio sudo apt install -y tio

2. Run tio tio /dev/ttyACM0

To exit tio (later), enter ctrl+t, q.

The Zephyr Shell

After flashing, you should observe the something matching the following output in tio.

uart:~$ *** Booting Zephyr OS build 9c858c863223 ***
[00:00:00.009,735] <inf> greybus_transport_tcpip: CPort 0 mapped to TCP/IP port 4242
[00:00:00.010,131] <inf> greybus_transport_tcpip: CPort 1 mapped to TCP/IP port 4243
[00:00:00.010,528] <inf> greybus_transport_tcpip: CPort 2 mapped to TCP/IP port 4244
[00:00:00.010,742] <inf> greybus_transport_tcpip: Greybus TCP/IP Transport initialized
[00:00:00.010,864] <inf> greybus_manifest: Registering CONTROL greybus driver.
[00:00:00.011,230] <inf> greybus_manifest: Registering GPIO greybus driver.

(continues on next page)

2.4. BeagleConnect 83

https://github.com/vaishnav98/greybus-for-zephyr/tree/mikrobus#trying-out-different-add-on-boardsdevices-over-mikrobus
https://tio.github.io/

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

[00:00:00.011,596] <inf> greybus_manifest: Registering I2C greybus driver.
[00:00:00.011,871] <inf> greybus_service: Greybus is active
[00:00:00.026,092] <inf> net_config: Initializing network
[00:00:00.134,063] <inf> net_config: IPv6 address: 2001:db8::1

The line beginning with *** is the Zephyr boot banner.

Lines beginning with a timestamp of the form [H:m:s.us] are Zephyr kernel messages.

Lines beginning with uart:~$ indicates that the Zephyr shell is prompting you to enter a command.

From the informational messages shown, we observe the following.

• Zephyr is configured with the following link-local IPv6 address fe80::3177:a11c:4b:1200

• It is listening for (both) TCP and UDP traffic on port 4242

However, what the log messages do not show (which will come into play later), are 2 critical pieces of
information:

1. The RF Channel: As you may have guessed, IEEE 802.15.4 devices are only able to communicate
with each other if they are using the same frequency to transmit and recieve data. This information
is part of the Physical Layer.

2. The PAN identifier: IEEE 802.15.4 devices are only be able to communicate with one another if
they use the same PAN ID. This permits multiple networks (PANs) on the same frequency. This
information is part of the Data Link Layer.

If we type help in the shell and hit Enter, we’re prompted with the following:

Please press the <Tab> button to see all available commands.
You can also use the <Tab> button to prompt or auto-complete all commands or its␣
→˓subcommands.
You can try to call commands with <-h> or <--help> parameter for more information.
Shell supports following meta-keys:

Ctrl+a, Ctrl+b, Ctrl+c, Ctrl+d, Ctrl+e, Ctrl+f, Ctrl+k, Ctrl+l, Ctrl+n, Ctrl+p,␣
→˓Ctrl+u, Ctrl+w
Alt+b, Alt+f.
Please refer to shell documentation for more details.

So after hitting Tab, we see that there are several interesting commands we can use for additional
information.

uart:~$
clear help history ieee802154 log net
resize sample shell

Zephyr Shell: IEEE 802.15.4 commands Entering ieee802154 help, we see

uart:~$ ieee802154 help
ieee802154 - IEEE 802.15.4 commands
Subcommands:
ack :<set/1 | unset/0> Set auto-ack flag
associate :<pan_id> <PAN coordinator short or long address (EUI-64)>
disassociate :Disassociate from network
get_chan :Get currently used channel
get_ext_addr :Get currently used extended address
get_pan_id :Get currently used PAN id
get_short_addr :Get currently used short address

(continues on next page)

84 Chapter 2. Boards

https://en.wikipedia.org/wiki/Link-local_address#IPv6
https://www.silabs.com/community/wireless/proprietary/knowledge-base.entry.html/2019/10/04/connect_tutorial6-ieee802154addressing-rapc

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

get_tx_power :Get currently used TX power
scan :<passive|active> <channels set n[:m:...]:x|all> <per-channel

duration in ms>
set_chan :<channel> Set used channel
set_ext_addr :<long/extended address (EUI-64)> Set extended address
set_pan_id :<pan_id> Set used PAN id
set_short_addr :<short address> Set short address
set_tx_power :<-18/-7/-4/-2/0/1/2/3/5> Set TX power

We get the missing Channel number (frequency) with the command ieee802154 get_chan.

uart:~$ ieee802154 get_chan
Channel 26

We get the missing PAN ID with the command ieee802154 get_pan_id.

uart:~$ ieee802154 get_pan_id
PAN ID 43981 (0xabcd)

Zephyr Shell: Network Commands Additionally, we may query the IPv6 information of the Zephyr
device.

uart:~$ net iface

Interface 0x20002b20 (IEEE 802.15.4) [1]
==
Link addr : CD:99:A1:1C:00:4B:12:00
MTU : 125
IPv6 unicast addresses (max 3):

fe80::cf99:a11c:4b:1200 autoconf preferred infinite
2001:db8::1 manual preferred infinite

IPv6 multicast addresses (max 4):
ff02::1
ff02::1:ff4b:1200
ff02::1:ff00:1

IPv6 prefixes (max 2):
<none>

IPv6 hop limit : 64
IPv6 base reachable time : 30000
IPv6 reachable time : 16929
IPv6 retransmit timer : 0

And we see that the static IPv6 address (2001:db8::1) from samples/net/sockets/echo_server/prj.
conf is present and configured. While the statically configured IPv6 address is useful, it isn’t 100%
necessary.

Rebuilding from source

#TODO: revisit everything below here

Prerequisites

• Zephyr environment is set up according to the Getting Started Guide

– Please use the Zephyr SDK when installing a toolchain above

2.4. BeagleConnect 85

https://docs.zephyrproject.org/latest/getting_started/index.html

BeagleBoard Docs, Release 0.0.9

• Zephyr SDK is installed at ~/zephyr-sdk-0.11.2 (any later version should be fine as well)

• Zephyr board is connected via USB

Cloning the repository This repository utilizes git submodules to keep track of all of the projects
required to reproduce the on-going work. The instructions here only cover checking out the demo branch
which should stay in a tested state. On-going development will be on the master branch.

Note: The parent directory ~ is simply used as a placeholder for testing. Please use whatever parent
directory you see fit.

Clone specific tag

cd ~
git clone --recurse-submodules --branch demo https://github.com/jadonk/beagleconnect

Zephyr

Add the Fork For the time being, Greybus must remain outside of the main Zephyr repository. Cur-
rently, it is just in a Zephyr fork, but it should be converted to a proper Module (External Project). This
is for a number of reasons, but mainly there must be:

• specifications for authentication and encryption

• specifications for joining and rejoining wireless networks

• specifications for discovery

Therefore, in order to reproduce this example, please run the following.

cd ~/beagleconnect/sw/zephyrproject/zephyr
west update

Build and Flash Zephyr Here, we will build and flash the Zephyr greybus_net sample to our device.

1. Edit the file ~/.zephyrrc and place the following text inside of it

export ZEPHYR_TOOLCHAIN_VARIANT=zephyr
export ZEPHYR_SDK_INSTALL_DIR=~/zephyr-sdk-0.11.2

1. Set up the required Zephyr environment variables via

source zephyr-env.sh

1. Build the project

BOARD=cc1352r1_launchxl west build samples/subsys/greybus/net --pristine \
--build-dir build/greybus_launchpad -- -DCONF_FILE="prj.conf overlay-802154.conf"

1. Ensure that the last part of the build process looks somewhat like this:

...
[221/226] Linking C executable zephyr/zephyr_prebuilt.elf
Memory region Used Size Region Size %age Used

FLASH: 155760 B 360360 B 43.22%
FLASH_CCFG: 88 B 88 B 100.00%

SRAM: 58496 B 80 KB 71.41%
IDT_LIST: 184 B 2 KB 8.98%

[226/226] Linking C executable zephyr/zephyr.elf

86 Chapter 2. Boards

https://docs.zephyrproject.org/latest/getting_started/index.html#install-a-toolchain
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://docs.zephyrproject.org/latest/guides/modules.html
https://github.com/cfriedt/zephyr/tree/greybus-sockets/samples/subsys/greybus/net

BeagleBoard Docs, Release 0.0.9

1. Flash the firmware to your device using

BOARD=cc1352r1_launchxl west flash --build-dir build/greybus_launchpad

Linux

Warning: If you aren’t comfortable building and installing a Linux kernel on your computer, you should
probably just stop here. I’ll assume you know the basics of building and installing a Linux kernel from
here on out.

Clone, patch, and build the kernel For this demo, I used the 5.8.4 stable kernel. Also, I’ve applied the
mikrobus kernel driver, though it isn’t strictly required for greybus.

Note: The parent directory ~ is simply used as a placeholder for testing. Please use whatever parent
directory you see fit.

TODO: The patches for gb-netlink will eventually be applied here until pushed into mainline.

cd ~
git clone --branch v5.8.4 --single-branch git://git.kernel.org/pub/scm/linux/kernel/
→˓git/stable/linux.git
cd linux
git checkout -b v5.8.4-greybus
git am ~/beagleconnect/sw/linux/v2-0001-RFC-mikroBUS-driver-for-add-on-boards.patch
git am ~/beagleconnect/sw/linux/0001-mikroBUS-build-fixes.patch
cp /boot/config-`uname -r` .config
yes "" | make oldconfig
./scripts/kconfig/merge_config.sh .config ~/beagleconnect/sw/linux/mikrobus.config
./scripts/kconfig/merge_config.sh .config ~/beagleconnect/sw/linux/atusb.config
make -j`nproc --all`
sudo make modules_install
sudo make install

Reboot and select your new kernel.

Probe the IEEE 802.15.4 Device Driver On the Linux machine, make sure the atusb driver is loaded.
This should happen automatically when the adapter is inserted or when the machine is booted while the
adapter is installed.

$ dmesg | grep -i ATUSB
[6.512154] usb 1-1: ATUSB: AT86RF231 version 2
[6.512492] usb 1-1: Firmware: major: 0, minor: 3, hardware type: ATUSB (2)
[6.525357] usbcore: registered new interface driver atusb
...

We should now be able to see the IEEE 802.15.4 network device by entering ip a show wpan0.

$ ip a show wpan0
36: wpan0: <BROADCAST,NOARP,UP,LOWER_UP> mtu 123 qdisc fq_codel state UNKNOWN group␣
→˓default qlen 300

link/ieee802.15.4 3e:7d:90:4d:8f:00:76:a2 brd ff:ff:ff:ff:ff:ff:ff:ff

But wait, that is not an IP address! It’s the hardware address of the 802.15.4 device. So, in order to
associate it with an IP address, we need to run a couple of other commands (thanks to wpan.cakelab.org).

2.4. BeagleConnect 87

BeagleBoard Docs, Release 0.0.9

Set the 802.15.4 Physical and Link-Layer Parameters

1. First, get the phy number for the wpan0 device

$ iwpan list
wpan_phy phy0
supported channels:

page 0: 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
current_page: 0
current_channel: 26, 2480 MHz
cca_mode: (1) Energy above threshold
cca_ed_level: -77
tx_power: 3
capabilities:

iftypes: node,monitor
channels:

page 0:
[11] 2405 MHz, [12] 2410 MHz, [13] 2415 MHz,
[14] 2420 MHz, [15] 2425 MHz, [16] 2430 MHz,
[17] 2435 MHz, [18] 2440 MHz, [19] 2445 MHz,
[20] 2450 MHz, [21] 2455 MHz, [22] 2460 MHz,
[23] 2465 MHz, [24] 2470 MHz, [25] 2475 MHz,
[26] 2480 MHz

tx_powers:
3 dBm, 2.8 dBm, 2.3 dBm, 1.8 dBm, 1.3 dBm, 0.7 dBm,
0 dBm, -1 dBm, -2 dBm, -3 dBm, -4 dBm, -5 dBm,
-7 dBm, -9 dBm, -12 dBm, -17 dBm,

cca_ed_levels:
-91 dBm, -89 dBm, -87 dBm, -85 dBm, -83 dBm, -81 dBm,
-79 dBm, -77 dBm, -75 dBm, -73 dBm, -71 dBm, -69 dBm,
-67 dBm, -65 dBm, -63 dBm, -61 dBm,

cca_modes:
(1) Energy above threshold
(2) Carrier sense only
(3, cca_opt: 0) Carrier sense with energy above threshold (logical␣

→˓operator is 'and')
(3, cca_opt: 1) Carrier sense with energy above threshold (logical␣

→˓operator is 'or')
min_be: 0,1,2,3,4,5,6,7,8
max_be: 3,4,5,6,7,8
csma_backoffs: 0,1,2,3,4,5
frame_retries: 3
lbt: false

1. Next, set the Channel for the 802.15.4 device on the Linux machine

sudo iwpan phy phy0 set channel 0 26

1. Then, set the PAN identifier for the 802.15.4 device on the Linux machine sudo iwpan dev wpan0
set pan_id 0xabcd

2. Associate the wpan0 device to a new, 6lowpan network interface

sudo ip link add link wpan0 name lowpan0 type lowpan

1. Finally, set the links up for both wpan0 and lowpan0

sudo ip link set wpan0 up
sudo ip link set lowpan0 up

88 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

We should observe something like the following when we run ip a show lowpan0.

ip a show lowpan0
37: lowpan0@wpan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc noqueue state␣
→˓UNKNOWN group default qlen 1000

link/6lowpan 9e:0b:a4:e8:00:d3:45:53 brd ff:ff:ff:ff:ff:ff:ff:ff
inet6 fe80::9c0b:a4e8:d3:4553/64 scope link
valid_lft forever preferred_lft forever

Ping Pong

Broadcast Ping Now, perform a broadcast ping to see what else is listening on lowpan0.

$ ping6 -I lowpan0 ff02::1
PING ff02::1(ff02::1) from fe80::9c0b:a4e8:d3:4553%lowpan0 lowpan0: 56 data bytes
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=1 ttl=64 time=0.099 ms
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=2 ttl=64 time=0.125 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=2 ttl=64 time=17.3 ms (DUP!)
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=3 ttl=64 time=0.126 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=3 ttl=64 time=9.60 ms (DUP!)
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=4 ttl=64 time=0.131 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=4 ttl=64 time=14.9 ms (DUP!)

Yay! We have pinged (pung?) the Zephyr device over IEEE 802.15.4 using 6LowPAN!

Ping Zephyr We can ping the Zephyr device directly without a broadcast ping too, of course.

$ ping6 -I lowpan0 fe80::cf99:a11c:4b:1200
PING fe80::cf99:a11c:4b:1200(fe80::cf99:a11c:4b:1200) from fe80::9c0b:a4e8:d3:4553
→˓%lowpan0 lowpan0: 56 data bytes
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=1 ttl=64 time=16.0 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=2 ttl=64 time=13.8 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=3 ttl=64 time=9.77 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=5 ttl=64 time=11.5 ms

Ping Linux Similarly, we can ping the Linux host from the Zephyr shell.

uart:~$ net ping --help
ping - Ping a network host.
Subcommands:
--help :'net ping [-c count] [-i interval ms] <host>' Send ICMPv4 or ICMPv6

Echo-Request to a network host.
$ net ping -c 5 fe80::9c0b:a4e8:d3:4553
PING fe80::9c0b:a4e8:d3:4553
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=0 ttl=64␣
→˓rssi=110 time=11 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=1 ttl=64␣
→˓rssi=126 time=9 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=2 ttl=64␣
→˓rssi=128 time=13 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=3 ttl=64␣
→˓rssi=126 time=10 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=4 ttl=64␣
→˓rssi=126 time=7 ms

2.4. BeagleConnect 89

BeagleBoard Docs, Release 0.0.9

Assign a Static Address So far, we have been using IPv6 Link-Local addressing. However, the
Zephyr application is configured to use a statically configured IPv6 address as well which is, namely
2001:db8::1.

If we add a similar static IPv6 address to our Linux IEEE 802.15.4 network interface, lowpan0, then we
should expect to be able to reach that as well.

In Linux, run the following

sudo ip -6 addr add 2001:db8::2/64 dev lowpan0

We can verify that the address has been set by examining the lowpan0 network interface again.

$ ip a show lowpan0
37: lowpan0@wpan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc noqueue state␣
→˓UNKNOWN group default qlen 1000

link/6lowpan 9e:0b:a4:e8:00:d3:45:53 brd ff:ff:ff:ff:ff:ff:ff:ff
inet6 2001:db8::2/64 scope global
valid_lft forever preferred_lft forever
inet6 fe80::9c0b:a4e8:d3:4553/64 scope link
valid_lft forever preferred_lft forever

Lastly, ping the statically configured IPv6 address of the Zephyr device.

$ ping6 2001:db8::1
PING 2001:db8::1(2001:db8::1) 56 data bytes
64 bytes from 2001:db8::1: icmp_seq=2 ttl=64 time=53.7 ms
64 bytes from 2001:db8::1: icmp_seq=3 ttl=64 time=13.1 ms
64 bytes from 2001:db8::1: icmp_seq=4 ttl=64 time=22.0 ms
64 bytes from 2001:db8::1: icmp_seq=5 ttl=64 time=22.7 ms
64 bytes from 2001:db8::1: icmp_seq=6 ttl=64 time=18.4 ms

Now that we have set up a reliable transport, let’s move on to the application layer.

Greybus

Hopefully the videos listed earlier provide a sufficient foundation to understand what will happen shortly.
However, there is still a bit more preparation required.

Build and probe Greybus Kernel Modules Greybus was originally intended to work exclusively on
the UniPro physical layer. However, we’re using RF as our physical layer and TCP/IP as our transport. As
such, there was need to be able to communicate with the Linux Greybus facilities through userspace, and
out of that need arose gb-netlink. The Netlink Greybus module actually does not care about the physical
layer, but is happy to usher Greybus messages back and forth between the kernel and userspace.

Build and probe the gb-netlink modules (as well as the other Greybus modules) with the following:

cd ${ WORKSPACE} /sw/greybus
make -j`nproc --all`
sudo make install
../load_gb_modules.sh

Build and Run Gbridge The gbridge utility was created as a proof of concept to abstract the Greybus
Netlink datapath among several reliable transports. For the purposes of this tutorial, we’ll be using it as
a TCP/IP bridge.

To run gbridge, perform the following:

90 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

sudo apt install -y libnl-3-dev libnl-genl-3-dev libbluetooth-dev libavahi-client-dev
cd gbridge
autoreconf -vfi
GBNETLINKDIR=${ PWD} /../greybus \
./configure --enable-uart --enable-tcpip --disable-gbsim --enable-netlink --disable-
→˓bluetooth
make -j`nproc --all`
sudo make install
gbridge

Blinky!

Now that we have set up a reliable TCP transport, and set up the Greybus modules in the Linux kernel,
and used Gbridge to connect a Greybus node to the Linux kernel via TCP/IP, we can now get to the heart
of the demonstration!

First, save the following script as blinky.sh.

#!/bin/bash

Blinky Demo for CC1352R SensorTag

/dev/gpiochipN that Greybus created
CHIP="$(gpiodetect | grep greybus_gpio | head -n 1 | awk '{print $1}')"

red, green, blue LED pins
RED=6
GREEN=7
BLUE=21

Bash array for pins and values
PINS=($RED $GREEN $BLUE)
NPINS=${# PINS[@]}

for ((;;)); do
for i in ${ !PINS[@]} ; do

turn off previous pin
if [$i -eq 0]; then

PREV=2
else

PREV=$((i-1))
fi
gpioset $CHIP ${ PINS[$PREV]} =0

turn on current pin
gpioset $CHIP ${ PINS[$i]} =1

wait a sec
sleep 1

done
done

Second, run the script with root privileges: sudo bash blinky.sh

The output of your minicom session should resemble the following.

2.4. BeagleConnect 91

BeagleBoard Docs, Release 0.0.9

$ *** Booting Zephyr OS build zephyr-v2.3.0-1435-g40c0ed940d71 ***
[00:00:00.011,932] <inf> net_config: Initializing network
[00:00:00.111,938] <inf> net_config: IPv6 address: fe80::6c42:bc1c:4b:1200
[00:00:00.112,121] <dbg> greybus_service.greybus_service_init: Greybus initializing..
[00:00:00.112,426] <dbg> greybus_transport_tcpip.gb_transport_backend_init: Greybus␣
→˓TCP/IP Transport initializing..
[00:00:00.112,579] <dbg> greybus_transport_tcpip.netsetup: created server socket 0␣
→˓for cport 0
[00:00:00.112,579] <dbg> greybus_transport_tcpip.netsetup: setting socket options for␣
→˓socket 0
[00:00:00.112,609] <dbg> greybus_transport_tcpip.netsetup: binding socket 0 (cport 0)␣
→˓to port 4242
[00:00:00.112,640] <dbg> greybus_transport_tcpip.netsetup: listening on socket 0␣
→˓(cport 0)
[00:00:00.112,823] <dbg> greybus_transport_tcpip.netsetup: created server socket 1␣
→˓for cport 1
[00:00:00.112,823] <dbg> greybus_transport_tcpip.netsetup: setting socket options for␣
→˓socket 1
[00:00:00.112,854] <dbg> greybus_transport_tcpip.netsetup: binding socket 1 (cport 1)␣
→˓to port 4243
[00:00:00.112,854] <dbg> greybus_transport_tcpip.netsetup: listening on socket 1␣
→˓(cport 1)
[00:00:00.113,037] <inf> net_config: IPv6 address: fe80::6c42:bc1c:4b:1200
[00:00:00.113,250] <dbg> greybus_transport_tcpip.netsetup: created server socket 2␣
→˓for cport 2
[00:00:00.113,250] <dbg> greybus_transport_tcpip.netsetup: setting socket options for␣
→˓socket 2
[00:00:00.113,281] <dbg> greybus_transport_tcpip.netsetup: binding socket 2 (cport 2)␣
→˓to port 4244
[00:00:00.113,311] <dbg> greybus_transport_tcpip.netsetup: listening on socket 2␣
→˓(cport 2)
[00:00:00.113,494] <dbg> greybus_transport_tcpip.netsetup: created server socket 3␣
→˓for cport 3
[00:00:00.113,494] <dbg> greybus_transport_tcpip.netsetup: setting socket options for␣
→˓socket 3
[00:00:00.113,525] <dbg> greybus_transport_tcpip.netsetup: binding socket 3 (cport 3)␣
→˓to port 4245
[00:00:00.113,555] <dbg> greybus_transport_tcpip.netsetup: listening on socket 3␣
→˓(cport 3)
[00:00:00.113,861] <inf> greybus_transport_tcpip: Greybus TCP/IP Transport initialized
[00:00:00.116,149] <inf> greybus_service: Greybus is active
[00:00:00.116,546] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.397,399] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.397,399] <dbg> greybus_transport_tcpip.accept_loop: socket 0 (cport 0) has␣
→˓traffic
[00:45:08.397,491] <dbg> greybus_transport_tcpip.accept_loop: accepted connection␣
→˓from [2001:db8::2]:39638 as fd 4
[00:45:08.397,491] <dbg> greybus_transport_tcpip.accept_loop: spawning client thread..
[00:45:08.397,735] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.491,363] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.491,363] <dbg> greybus_transport_tcpip.accept_loop: socket 3 (cport 3) has␣
→˓traffic
[00:45:08.491,455] <dbg> greybus_transport_tcpip.accept_loop: accepted connection␣
→˓from [2001:db8::2]:39890 as fd 5
[00:45:08.491,455] <dbg> greybus_transport_tcpip.accept_loop: spawning client thread..
[00:45:08.491,699] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.620,056] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1

(continues on next page)

92 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

[00:45:08.620,086] <dbg> greybus_transport_tcpip.accept_loop: socket 2 (cport 2) has␣
→˓traffic
[00:45:08.620,147] <dbg> greybus_transport_tcpip.accept_loop: accepted connection␣
→˓from [2001:db8::2]:42422 as fd 6
[00:45:08.620,147] <dbg> greybus_transport_tcpip.accept_loop: spawning client thread..
[00:45:08.620,422] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.679,504] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.679,534] <dbg> greybus_transport_tcpip.accept_loop: socket 1 (cport 1) has␣
→˓traffic
[00:45:08.679,595] <dbg> greybus_transport_tcpip.accept_loop: accepted connection␣
→˓from [2001:db8::2]:48286 as fd 7
[00:45:08.679,595] <dbg> greybus_transport_tcpip.accept_loop: spawning client thread..
[00:45:08.679,870] <dbg> greybus_transport_tcpip.accept_loop: calling poll
...

Read I2C Registers The SensorTag comes with an opt3001 ambient light sensor as well as an hdc2080
temperature & humidity sensor.

First, find which i2c device corresponds to the SensorTag:

ls -la /sys/bus/i2c/devices/* | grep "greybus"
lrwxrwxrwx 1 root root 0 Aug 15 11:24 /sys/bus/i2c/devices/i2c-8 -> ../../../devices/
→˓virtual/gb_nl/gn_nl/greybus1/1-2/1-2.2/1-2.2.2/gbphy2/i2c-8

On my machine, the i2c device node that Greybus creates is /dev/i2c-8.

Read the ID registers (at the i2c register address 0x7e) of the opt3001 sensor (at i2c bus address 0x44)
as shown below:

i2cget -y 8 0x44 0x7e w
0x4954

Read the ID registers (at the i2c register address 0xfc) of the hdc2080 sensor (at i2c bus address 0x41)
as shown below:

i2cget -y 8 0x41 0xfc w
0x5449

Conclusion

The blinking LED can and poking i2c registers can be a somewhat anticlimactic, but hopefully it illustrates
the potential for Greybus as an IoT application layer protocol.

What is nice about this demo, is that we’re using Device Tree to describe our Greybus Peripheral declara-
tively, they Greybus Manifest is automatically generated, and the Greybus Service is automatically started
in Zephyr.

In other words, all that is required to replicate this for other IoT devices is simply an appropriate Device
Tree overlay file.

The proof-of-concept involving Linux, Zephyr, and IEEE 802.15.4 was actually fairly straight forward and
was accomplished with mostly already-upstream source.

For Greybus in Zephyr, there is still a considerable amount of integration work to be done, including
* converting the fork to a proper Zephyr module * adding security and authentication * automatic
detection, joining, and rejoining of devices.

Thanks for reading, and we hope you’ve enjoyed this tutorial.

2.4. BeagleConnect 93

BeagleBoard Docs, Release 0.0.9

2.4.3 BeagleConnect™ Story

There are many stories behind BeagleConnect™, mine is just one of them. It begins with my mom
teaching me about computers. She told me I could anything I wanted with ours, as long as I didn’t open
the case. This was the late-70s/early-80s, so all she needed to do was put her floppy disk away and there
wasn’t risk of me damaging the family photo album or her ability to do her work the next day. I listened
and learned from her the basics of programming, but it wasn’t long before I wanted to take the computer
apart.

Initially exploring Getting Started in Electronics satisfied my itch for quite a while. Eventually, I got a
Commodore 64 and began connecting voice synthesizer ICs to it. My interest in computers and electron-
ics flourished into an electrical engineering degree and a long career in the semiconductor industry.

Over this time, I’ve become more and more alarmed with the progress of technology. Now, to be clear,
I love technology. I love innovation and invention. It is just that some things have evolved in a sort of
tunnel-vision, without bringing everyone along.

But, what about keyboard users? As graphical user interfaces and mice took over computers, they rapidly
became almost unusable by my mom. She typed well, but the dexterity to move a mouse aluded her. To
satisfy the need to interact with locations on the screen, she adopted using a joystick and her productivity
came to a crawl. How is it that such assumptions could be made impacting all computer users without
any thoughtful provisions for what already worked?

2.4.4 BeagleConnect Experience

BeagleConnect™ provides a scalable experience for interacting with the physical world.

Note: The term BeagleConnect™ refers to a technology comprising of a family of boards, a collection of
Linux kernel drivers, microcontroller firmware, a communication protocol, and system-level integration
to automation software tools. More specific terms will be applied in the architecture details. The term
is also used here to represent the experience introduced to users through the initial BeagleConnect™
Freedom product consisting of a board and case which ships programmed and ready to be used.

For scientists, we are integrating Jupyter Notebook with the data streams from any of hundreds of sensor
options, including vibration, gas detection, biometrics and more. These data streams can be stored in
simple data files <https://en.wikipedia.org/wiki/Comma-separated_values> or processed and visualized.

#TODO: provide images demonstrating Jupyter Notebook visualization

For embedded systems developers, data is easily extracted using the standard IIO interface provided
by the Linux kernel running on the gateway using any of hundreds of programming languages and
environments, without writing a line of microcontroller firmware. The Linux environment provides
opportunities for high-level remote management using tools like Balena with applications deployed in
Docker containers.

#TODO: provide image illustrating remote management

The hardware and software are fully open source, providing for scalability and a lack of vendor lock-in.

For DevOps. . .

For home automaters, integration into WebThings. . .

#TODO: think a bit more about this section with some feedback from Cathy.

94 Chapter 2. Boards

https://en.wikipedia.org/wiki/Floppy_disk
http://www.forrestmims.org/
https://jupyter.org/
https://www.mikroe.com/click/sensors/force
https://www.mikroe.com/click/sensors/gas
https://www.mikroe.com/click/sensors/biometrics
https://www.mikroe.com/click/sensors

BeagleBoard Docs, Release 0.0.9

2.4.5 BeagleConnect Boards

Get started using your BeagleConnect.

2.4. BeagleConnect 95

BeagleBoard Docs, Release 0.0.9

BeagleConnect Freedom

The initial BeagleConnect™ Freedom production release will:

• Support at least 100 mikroBUS-based Click boards from Mikroelectronika

• Work with Bluetooth Low Energy (BLE)-enabled Linux computers at 2.4GHz

• Work with long-range sub-1GHz IEEE 802.15.4 wireless connections at 500 meters with data rates
of 1kbps, and

• Work with a low-cost BeagleBoard.org Linux single-board computer (SBC) as a BeagleConnect™
gateway device and work with at least 10 other BeagleConnect™ node devices each supporting 2
add-on sensor, actuator or indicator devices.

Future releases will be collaborated with the community, evolve dynamically, and contain additional
functionality. The goal is to support over 500 add-on devices within the first year after the initial release.

Important: BeagleConnect™ Freedom enables wirelessly adding new device nodes and is targeted to
cost initially around US$20 with a roadmap to variants as low as US$1.

BeagleConnect™ Freedom BeagleConnect™ Freedom is based on the TI CC1352 and is the first avail-
able BeagleConnect™ solution. It implements:

• BeagleConnect™ gateway device function for Sub-GHz 802.15.4 long-range wireless

• BeagleConnect™ node device function for Bluetooth Low-Energe (BLE) and Sub-GHz 802.15.4 long
range wireless

• USB-based serial console and firmware updates

• 2x mikroBUS sockets with BeagleConnect™ protocol support

#TODO: provide image of BeagleConnect™ Freedom in a case with a hand for size perspective

96 Chapter 2. Boards

https://www.ti.com/product/CC1352P7
https://www.mikroe.com/mikrobus

BeagleBoard Docs, Release 0.0.9

BeagleConnect™ Freedom beta kit A small number of beta kits have been assembled with BeagleCon-
nect™ Freedom rev C5 boards, which is the version that should be taken to production.

The kit includes:

• 1x Seeed BeagleBone® Green Gateway (board, USB cable)

• 3x BeagleConnect™ Freedom (board, attenna, USB cable)

• 1x Mikroelectronika Click ID Board

To get started with this kit, see [demo-1].

What makes BeagleConnect™ new and different?
Important: BeagleConnect™ solves IoT in a different and better way than any previous solution.

The device interface software is already done BeagleConnect™ uses the collaboratively developed
Linux kernel to contain the intelligence required to speak to these devices (sensors, actuators, and indi-
cators), rather than relying on writing code on a microcontroller specific to these devices. Some existing
solutions rely on large libraries of microcontroller code, but the integration of communications, mainte-
nance of the library with a limited set of developer resources and other constraints to be explained later
make those other solutions less suitable for rapid prototyping than BeagleConnect™.

Linux presents these devices abstractly in ways that are self-descriptive. Add an accelerometer to the
system and you are automatically fed a stream of force values in standard units. Add a temperature
sensor and you get it back in standard units again. Same for sensing magnetism, proximity, color, light,
frequency, orientation, or multitudes of other inputs. Indicators, such as LEDs and displays, are similarly
abstracted with a few other kernel subsystems and more advanced actuators with and without feedback
control are in the process of being developed and standardized. In places where proper Linux kernel
drivers exist, no new specialized code needs to be created for the devices.

Important: Bottom line: For hundreds of devices, users won’t have to write a single line of code to add
them their systems. The automation code they do write can be extremely simple, done with graphical
tools or in any language they want. Maintenance of the code is centralized in a small reusable set of
microcontroller firmware and the Linux kernel, which is highly peer reviewed under a highly-regarded
governance model.

On-going maintenance Because there isn’t code specific to any given network-of-devices configura-
tion , we can all leverage the same software code base. This means that when someone fixes an issue in
either BeagleConnect™ firmware or the Linux kernel, you benefit from the fixes. The source for Beagle-
Connect™ firmware is also submitted to the Zephyr Project upstream, further increasing the user base.
Additionally, we will maintain stable branches of the software and provide mechanisms for updating
firmware on BeagleConnect™ hardware. With a single, relatively small firmware load, the potential for
bugs is kept low. With large user base, the potential for discovering and resolving bugs is high.

Rapid prototyping without wiring BeagleConnect™ utilizes the mikroBUS standard. The mikroBUS
standard interface is flexible enough for almost any typical sensor or indicator with hundreds of devices
available.

Note: Currently, we have support in the Linux kernel for a bit over 100 Click mikroBUS add-on boards
from Mikroelektronika and are working with Mikroelektronika on a updated version of the specification
for these boards to self-identify. Further, eventually the vast majority of over 800 currently available
Click mikroBUS add-on boards will be supported as well as the hundreds of compliant boards developed
every year.

2.4. BeagleConnect 97

https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://www.mikroe.com/unique-id-click
https://wiki.p2pfoundation.net/Linux_-_Governance
https://wiki.p2pfoundation.net/Linux_-_Governance
https://www.zephyrproject.org/
https://elinux.org/Mikrobus

BeagleBoard Docs, Release 0.0.9

Long-range, low-power wireless BeagleConnect™ Freedom wireless hardware is built around a
TI CC1352 multiprotocol and multi-band Sub-1 GHz and 2.4-GHz wireless microcontroller (MCU).
CC1352P7 includes a 48-MHz Arm® Cortex®-M4F processor, 704KB Flash, 256KB ROM, 8KB Cache
SRAM, 144KB of ultra-low leakage SRAM, and Over-the-Air upgrades (OTA).

Full customization possible BeagleConnect™ utilizes open source hardware and open source soft-
ware, making it possible to optimize hardware and software implementations and sourcing to meet
end-product requirements. BeagleConnect™ is meant to enable rapid-prototyping and not to necessarily
satisfy any particular end-product’s requirements, but with full considerations for go-to-market needs.

Each BeagleBoard.org BeagleConnect™ solution will be:

• Readily available for over 10 years,

• Built with fully open source software with submissions to mainline Linux and Zephyr repositories
to aide in support and porting,

• Built with fully open source and non-restrictive hardware design including schematic, bill-of-
materials, layout, and manufacturing files (with only the BeagleBoard.org logo removed due to
licensing restrictions of our brand),

• Built with parts where at least a compatible part is available from worldwide distributors in any
quantity,

• Built with design and manufacturing partners able to help scale derivative designs,

• Based on a security model using public/private keypairs that can be replaced to secure your own
network, and

• Fully FCC/CE certified.

Getting Started

• Typical BeagleConnect Freedom usage with a Linux host

• Programming BeagleConnect Freedom with Zephyr

BeagleConnect Freedom Usage This section describes the usage model we are developing. To use the
current code in development, please refer to the [development] section.

BeagleConnect wireless user experience

98 Chapter 2. Boards

http://www.ti.com/product/CC1352P7
https://en.wikipedia.org/wiki/Over-the-air_programming
https://www.oshwa.org/definition/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software

BeagleBoard Docs, Release 0.0.9

Enable a Linux host with BeagleConnect

Log into a host system running Linux that is BeagleConnect™ enabled. Enable a Linux host with Beagle-
Connect™ by plugging a BeagleConnect™ gateway device into it’s USB port. You’ll also want to have a
BeagleConnect™ node device with a sensor, actuator or indicator device connected.

Note: BeagleConnect™ Freedom can act as either a BeagleConnect™ gateway device or a BeagleCon-
nect™ node device.

Important: The Linux host will need to run the BeagleConnect™ management software, most of which
is incorporated into the Linux kernel. Support will be provided for BeagleBoard and BeagleBone boards,
x86 hosts, and Raspberry Pi.

#TODO#: Clean up images

2.4. BeagleConnect 99

BeagleBoard Docs, Release 0.0.9

Connect host and device

Initiate a connection between the host and devices by pressing the discovery button(s).

Device data shows up as files

New streams of self-describing data show up on the host system using native device drivers.

High-level applications, like Node-RED, can directly read/write these high-level data streams (including
data-type information) to Internet-based MQTT brokers, live dashboards, or other logical operations

100 Chapter 2. Boards

https://mqtt.org/

BeagleBoard Docs, Release 0.0.9

without requiring any sensor-specific coding. Business logic can be applied using simple if-this-then-
that style operations or be made as complex as desired using virtually any programming language or
environment.

Components BeagleConnect™ enabled host Linux computer, possibly single-board computer (SBC),
with BeagleConnect™ management software and BeagleConnect™ gateway function. BeagleConnect™
gateway function can be provided by a BeagleConnect™ compatible interface or by connecting a Beagle-
Connect™ gateway device over USB.

Note: If the Linux host has BLE, the BeagleConnect™ gateway is optional for short distances

BeagleConnect™ Freedom Board, case, and wireless MCU with Zephyr based firmware for acting as
either a BeagleConnect™ gateway device or BeagleConnect™ node device.

• In BeagleConnect™ gateway device mode: Provides long-range, low-power wireless communica-
tions, Connects with the host via USB and an associated Linux kernel driver, and is powered by the
USB connector.

• In BeagleConnect™ node device mode: Powered by a battery or USB connector Provides 2
mikroBUS connectors for connecting any of hundreds of Click Board mikroBUS add-on devices
Provides new Linux host controllers for SPI, I2C, UART, PWM, ADC, and GPIO with interrupts via
Greybus

BeagleConnect gateway device Provides a BeagleConnect™ compatible interface to a host. This could
be a built-in interface device or one connected over USB. BeagleConnect™ Freedom can provide this
function.

BeagleConnect node device Utilizes a BeagleConnect™ compatible interface and TODO

BeagleConnect compatible interface Immediate plans are to support Bluetooth Low Energy (BLE),
2.4GHz IEEE 802.15.4 , and Sub-GHz IEEE 802.15.4 wireless interfaces. A built-in BLE interface is suit-
able for this at short range, whereas IEEE 802.15.4 is typically significantly better at long ranges. Other
wired interfaces, such as CAN and RS-485, are being considered for future BeagleConnect™ gateway
device and BeagleConnect™ node device designs.

Greybus TODO

#TODO: Find a place for the following notes:

• The device interfaces get exposed to the host via Greybus BRIDGED_PHY protocol

• The I2C bus is probed for a an identifier EEPROM and appropriate device drivers are loaded on the
host

• Unsupported Click Boards connected are exposed via userspace drivers on the host for development

What’s different? So, in summary, what is so different with this approach?

• No microcontroller code development is required by users

• Userspace drivers make rapid prototyping really easy

• Kernel drivers makes the support code collaborative parts of the Linux kernel , rather than cut-and-
paste

BeagleConnect Freedom & Zephyr

2.4. BeagleConnect 101

https://bbb.io/click

BeagleBoard Docs, Release 0.0.9

Develop for BeagleConnect Freedom with Zephyr Developing directly in Zephyr will not be ulti-
mately required for end-users who won’t touch the firmware running on BeagleConnect™ Freedom and
will instead use the BeagleConnect™ Greybus functionality, but is important for early adopters as well as
people looking to extend the functionality of the open source design. If you are one of those people, this
is a good place to get started.

Equipment to begin development There are many options, but let’s get started with one recom-
mended set for the beta users.

Required

• beta-kit

– Seeed Studio BeagleBone® Green Gateway

– 3x BeagleConnect™ Freedom board, antenna, U.FL to SMA cable, SMA antenna and USB
Type-A to Type-C cable

– 1x MikroE ID Click

• microSD card (6GB or larger)

• microSD card programmer

Recommended

• 12V power brick

• USB to TTL 3.3V UART adapter

• Ethernet cable and Internet connection

• 2x USB power adapters

• BME280-based Weather Click

• iAQ-Core-based Air Quality 2 Click

Optional

• x86_64 computer running Ubuntu 20.04.3 LTS

Install the latest software image for BeagleBone Green Gateway Download and install the Debian
Linux operating system image for the Seeed BeagleBone® Green Gateway host.

1. Download the special mikroBUS/Greybus BeagleBoard.org Debian image from here. Pick the most
recent directory and select the file beginning with bone- and ending with .img.xz. Today that file
is bone-debian-11.2-iot-mikrobus-armhf-2022-03-04-4gb.img.xz.

2. Load this image to a microSD card using a tool like Etcher.

3. Insert the microSD card into the Green Gateway.

4. Power BeagleBone Green Gateway via the 12V barrel jack.

#TODO: describe how to know it is working

102 Chapter 2. Boards

https://smile.amazon.com/TMEZON-Power-Adapter-Supply-2-1mm/dp/B00Q2E5IXW
https://smile.amazon.com/Converter-Terminated-Galileo-BeagleBone-Minnowboard/dp/B06ZYPLFNB
https://www.mikroe.com/weather-click
https://www.mikroe.com/air-quality-2-click
https://rcn-ee.net/rootfs/debian-mikrobus-armhf/

BeagleBoard Docs, Release 0.0.9

Log into BeagleBone Green Gateway These instructions assume an x86_64 computer runing Ubuntu
20.04.3 LTS, but any computer can be used to connect to your BeagleBone Green Gateway.

1. Log onto the Seeed BeagleBone® Green Gateway using ssh.

• We need IP address, Username, and Password to connect to the device.

• The default IP for the BeagleBone hardware is 192.168.7.2

• The default Username is debian & Password is temppwd

• To connect you can simply type $ ssh debian@192.168.7.2 and when asked for pass-
word just type temppwd

• Congratulations, You are now connected to the device!

2. Connect to the WiFi

• Execute sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf and provide
the password temppwd to edit the configuration file for the WiFi connection.

• Now edit the file (shown below) under the network={...} section you can set you ssid
(WiFi name) and psk (Wifi Password).

ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev
update_config=1
#country=IN
network={

ssid="WiFi Name"
psk="WiFi Password"

}

• Now save the file with CTRL+O and exit with CTRL+X.

• Check if the connection is established by executing $ ping 8.8.8.8 you should see some-
thing like shown below.

debian@BeagleBone:~$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=10.5 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=5.72 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=6.13 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=118 time=6.11 ms
...

• If everything goes well, you are ready to update your system and install new applications
for beagleconnect.

Note: If you are facing some issue during boot then you can try debugging the boot session with a USB to
serial interface cable such as those made by FTDI plugged into J10 with the black wire of the FTDI cable
toward the Ethernet connector. Application like tio/minicom/putty can be used to make the connection
establishment procedure easy.

TODO: Simplify and elaborate on this section, add boot session debugging walkthrough

Install Zephyr development tools on BeagleBone Green Gateway

1. Update the system.

sudo apt update

2. Install all BeagleConnect™ management software.

2.4. BeagleConnect 103

https://forum.beagleboard.org/t/debian-11-x-bullseye-monthly-snapshots/31280

BeagleBoard Docs, Release 0.0.9

sudo apt install -y \
beagleconnect beagleconnect-msp430 \
git vim \
build-essential \
cmake ninja-build gperf \
ccache dfu-util device-tree-compiler \
make gcc libsdl2-dev \
libxml2-dev libxslt-dev libssl-dev libjpeg62-turbo-dev \
gcc-arm-none-eabi libnewlib-arm-none-eabi \
libtool-bin pkg-config autoconf automake libusb-1.0-0-dev \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel

echo "export PATH=$PATH:$HOME/.local/bin" >> $HOME/.bashrc

source $HOME/.bashrc

3. Reboot

sudo reboot

4. Install BeagleConnect™ flashing software

pip3 install -U west

5. Reboot

sudo reboot

6. Download and setup Zephyr for BeagleConnect™

cd
west init -m https://github.com/jadonk/zephyr --mr bcf-sdk-3.1.0-rebase bcf-
→˓zephyr
cd $HOME/bcf-zephyr
west update
west zephyr-export
pip3 install -r zephyr/scripts/requirements-base.txt
echo "export CROSS_COMPILE=/usr/bin/arm-none-eabi-" >> $HOME/.bashrc
echo "export ZEPHYR_BASE=$HOME/bcf-zephyr/zephyr" >> $HOME/.bashrc
echo "export PATH=$HOME/bcf-zephyr/zephyr/scripts:$PATH" >> $HOME/.bashrc
echo "export BOARD=beagleconnect_freedom" >> $HOME/.bashrc
source $HOME/.bashrc

Build applications for BeagleConnect Freedom on BeagleBone Green Gateway Now you can build
various Zephyr applications

1. Change directory to BeagleConnect Freedom zephyr repository.

cd $HOME/bcf-zephyr

2. Build blinky example

3. TODO

west build -d build/sensortest zephyr/samples/boards/beagle_bcf/sensortest --
→˓ -DOVERLAY_CONFIG=overlay-subghz.conf

4. TODO

104 Chapter 2. Boards

BeagleBoard Docs, Release 0.0.9

west build -d build/wpanusb modules/lib/wpanusb_bc -- -DOVERLAY_
→˓CONFIG=overlay-subghz.conf

5. TODO

west build -d build/bcfserial modules/lib/wpanusb_bc -- -DOVERLAY_
→˓CONFIG=overlay-bcfserial.conf -DDTC_OVERLAY_FILE=bcfserial.overlay

6. TODO

west build -d build/greybus modules/lib/greybus/samples/subsys/greybus/net --
→˓ -DOVERLAY_CONFIG=overlay-802154-subg.conf

Flash applications to BeagleConnect Freedom from BeagleBone Green Gateway And then you can
flash the BeagleConnect Freedom boards over USB

1. Make sure you are in Zephyr directory

cd $HOME/bcf-zephyr

2. Flash Blinky

cc2538-bsl.py build/blinky

Debug applications over the serial terminal #TODO#

2.5 BeagleBoard (all)

BeagleBoard boards are low-cost, ARM-based development boards suitable for rapid prototyping and
open-hardware to enable professionals to develop production systems.

The latest PDF-formatted System Reference Manual for each BeagleBoard board is linked below.

• BeagleBoard

• BeagleBoard-xM

• BeagleBoard-X15

2.5. BeagleBoard (all) 105

https://git.beagleboard.org/beagleboard/beagleboard/-/blob/master/BeagleBoard_revC5_SRM.pdf
https://git.beagleboard.org/beagleboard/beagleboard-xm/-/blob/master/BeagleBoard-xM_SRM.pdf
https://git.beagleboard.org/beagleboard/beagleboard-x15/-/blob/master/BeagleBoard-X15_SRM.pdf

BeagleBoard Docs, Release 0.0.9

106 Chapter 2. Boards

Chapter 3

Projects

This is a collection of reasonably well-supported projects useful to Beagle developers.

3.1 simpPRU

3.1.1 simpPRU Basics

The PRU is a dual core micro-controller system present on the AM335x SoC which powers the Beagle-
Bone. It is meant to be used for high speed jitter free IO control. Being independent from the linux
scheduler and having direct access to the IO pins of the BeagleBone Black, the PRU is ideal for offloading
IO intensive tasks.

Programming the PRU is a uphill task for a beginner, since it involves several steps, writing the firmware
for the PRU, writing a loader program. This can be a easy task for a experienced developer, but it keeps
many creative developers away. So, I propose to implement a easy to understand language for the PRU,
hiding away all the low level stuff and providing a clean interface to program PRU.

This can be achieved by implementing a language on top of PRU C. It will directly compile down to PRU
C. This could also be solved by implementing a bytecode engine on the PRU, but this will result in waste
of already limited resources on PRU. With this approach, both PRU cores can be run independent of each
other.

What is simpPRU

• simpPRU is a procedural programming language.

• It is a statically typed language. Variables and functions must be assigned data types during com-
pilation.

107

BeagleBoard Docs, Release 0.0.9

• It is typesafe, and data types of variables are decided during compilation.

• simpPRU codes have a .sim extension.

• simpPRU provides a console app to use Remoteproc functionality.

3.1.2 Build from source

Dependencies

• flex

• bison

• gcc

• gcc-pru

• gnuprumcu

• cmake

Build

git clone https://github.com/VedantParanjape/simpPRU.git
cd simpPRU
mkdir build
cd build
cmake ..
make

Install

sudo make install

Generate debian package

sudo make package

3.1.3 Install

Dependencies

• gcc-pru

• gnuprumcu

• config-pin utility (for autoconfig)

Installation

For Instructions head over to Installation

108 Chapter 3. Projects

https://simppru.readthedocs.io/en/latest/install/install/

BeagleBoard Docs, Release 0.0.9

Requirements

Currently this only supports am335x systems: PocketBeagle, BeagleBone Black and BeagleBone Black
Wireless:

• gcc-pru

• gnuprumcu

• beaglebone image with official support for remoteproc: ti-4.19+ kernel

• config-pin utility

Build from source

For Instructions head over to Building from source

simppru-console

For detailed usage head to Detailed Usage

amd64

wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/simppru-1.4-
→˓amd64.deb

sudo dpkg -i simppru-1.4-amd64.deb

armhf

wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/simppru-1.4-
→˓armhf.deb

sudo dpkg -i simppru-1.4-armhf.deb

Issues

• For full source code of simPRU visit

• To report a bug or start a issue visit

3.1.4 Language Syntax

• simpPRU is a procedural programming language.

• It is a statically typed language. Variables and functions must be assigned data types during com-
pilation.

• It is typesafe, and data types of variables are decided during compilation.

• simPRU codes have a .sim extension.

3.1. simpPRU 109

https://simppru.readthedocs.io/en/latest/install/build/
https://simppru.readthedocs.io/en/latest/usage/usage-simppru-console
https://github.com/VedantParanjape/simppru
https://github.com/VedantParanjape/simppru/issues

BeagleBoard Docs, Release 0.0.9

Datatypes

• int - Integer datatype

• bool - Boolean datatype

• char / uint8 - Character / Unsigned 8 bit integer datatype

• void - Void datatype, can only be used a return type for functions

Constants

• <any_integer> - Integer constant. Integers can be decimal, hexadecimal (start with 0x or 0X) or
octal (start with 0)

• '<any character>' - Character constant. These can be assigned to both int and char/uint8 vari-
ables

• true - Boolean constant (True)

• false - Boolean constant (False)

• Px_yz - Pin mapping constants are Integer constant, where x is 1,2 or 8,9 and yz are the header
pin numbers.

Operators

• {,} - Braces

• (,) - Parenthesis

• /,*,+,-,% - Arithmetic operators

• >,<,==,!=,>=,<= - Comparison operators

• ~,&,|,<<,>> - Bitwise operators: not, and, or and bitshifts

• not,and,or - Logical operators: not, and, or

• := - Assignment operator

• Result of Arithmetic and Bitwise operators is Integer constant.

• Result of Comparison and Logical operators is Boolean constant.

• Characters are treated as integers when used in Arithmetic expressions.

• Only Integer constants can be used with Arithmetic and Bitwise operators.

• Only Integer constants can be used with Comparison operators.

• Only Boolean constants can be used with Logical operators.

• Operators are evaluated following these precedence rules.

Correct: bool out := 5 > 6;
Wrong: int yy := 5 > 6;

Variable declaration

• Datatype of variable needs to be specified during compile time.

• Variables can be assigned values after declarations.

• If variable is not assigned a value after declaration, it is set to 0 for integer and char/uint8 and
to false for boolean by default.

110 Chapter 3. Projects

https://en.cppreference.com/w/c/language/operator_precedence

BeagleBoard Docs, Release 0.0.9

• Variables can be assigned other variables of same datatype. ints and chars can be assigned to each
other.

• Variables can be assigned expressions whose output is of same datatype.

Declaration

int var;
char char_var;
bool test_var;

Assignment during Declaration

int var := 99;
char char_var := 'a';
uint8 short_var := 255;
bool test_var := false;

Assignment

var := 45;
short_var := var;
test_var := true;

• Variables to be assigned must be declared earlier.

• Datatype of the variables cannot change. Only appropriate expressions/constants of their respec-
tive datatypes can be assigned to the variables.

• Integer and Character variable can be assigned only Integer expression/Integer constant/Character
constant.

• Boolean variable can be assigned only Boolean expression/constant.

Arrays

• Arrays are static - their size has to be known at compile time and this size cannot be changed later.

• Arrays can be used with bool, int and char.

• Arrays do not support any arithmetic / logical / comparison / bitwise operators, however these
operators work fine on their elements.

Declaration and Assignment

• The data type has to be specified as data_type[size].

• Array of char can be initialized from a double quoted string, where the length of the array would
be at least the length of the string plus 1.

int[16] a; /* array of 16 integers */
char[20] string1 := "I love BeagleBoards";

Indexing:

• Arrays are zero-indexed.

• The index can be either a char or an int or an expression involving chars and ints.

• Accessing elements of an array:

3.1. simpPRU 111

BeagleBoard Docs, Release 0.0.9

int a := arr[4]; /* Copy the 5th element of arr to a */

• Changing elements of an array:

arr[4] := 5; /* The 5th element of arr is now 5 */

int i := 4;
arr[i] := 6; /* The 5th element of arr is now 6 */

char j := 4;
arr[j] := 7; /* The 5th element of arr is now 7 */

arr[i+j] := 1; /* The 9th element of arr is now 1 */

/* Declaring and initializing an array with all zeros */
int[16] arr;
for: i in 0:16 {

arr[i] := 0;
}

Comments

• simpPRU supports C style multiline comments.

/* This is a comment */

/* Comments can span
multiple lines */

Keyword and Identifiers

Reserved keywords
``true`` ``read_counter`` ``stop_counter``
``false`` ``start_counter`` ``pwm``
``int`` ``delay`` ``digital_write``
``bool`` ``digital_read`` ``def``
``void`` ``return`` ``or``
``if`` ``and`` ``not``
``elif`` ``continue`` ``break``
``else`` ``while`` ``in``
``for`` ``init_message_channel`` ``send_message``
``receive_message`` ``print`` ``println``

Valid identifier naming

• An identifier/variable name must be start with an alphabet or underscore (_) only, no other special
characters, digits are allowed as first character of the identifier/variable name.

product_name, age, _gender

• Any space cannot be used between two words of an identifier/variable; you can use underscore (_)
instead of space.

product_name, my_age, gross_salary

112 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

• An identifier/variable may contain only characters, digits and underscores only. No other special
characters are allowed, and we cannot use digit as first character of an identifier/variable name
(as written in the first point).

length1, length2, _City_1

Detailed info: https://www.includehelp.com/c/identifier-variable-naming-conventions.aspx

Expressions

Arithmetic expressions

=> (9 + 8) * 2 + -1;
33
=> 11 % 3;
2
=> 2 * 6 << 2 + 1;
96
=> ~0xFFFFFFFF;
0

Boolean expressions

=> 9 > 2 or 8 != 2 and not(2 >= 5 or 9 <= 5) or 9 != 7;
true
=> 0xFFFFFFFF != 0XFFFFFFFF;
false
=> 'a' < 'b';
true

• Note : Expressions are evaluated following the operator precedence <#operators>

If-else statement

Statements in the if-block are executed only if the if-expression evaluates to true. If the value of ex-
pression is true, statement1 and any other statements in the block are executed and the else-block, if
present, is skipped. If the value of expression is false, then the if-block is skipped and the else-block, if
present, is executed. If elif-block are present, they are evaluated, if they become true, the statement is
executed, otherwise, it goes on to eval next set of statements

Syntax

if : boolean_expression {
statement 1
...
...

}
elif : boolean_expression {

statement 2
...
...
...

}
else {

statement 3
...

(continues on next page)

3.1. simpPRU 113

https://www.includehelp.com/c/identifier-variable-naming-conventions.aspx

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

...
}

Examples

int a := 3;

if : a != 4 {
a := 4;

}
elif : a > 4 {

a := 10;
}
else {

a := 0;
}

• This will evaluate as follows, since a = 3, if-block (3!=4) will evaluate to true, and value of a will
be set to 4, and program execution will stop.

For-loop statement

For loop is a range based for loop. Range variable is a local variable with scope only inside the for loop.

Syntax

for : var in start:stop {
statement 1
....
....

}

• Here, for loop is a range based loop, value of integer variable var will vary from start to stop -
1. Value of var does not equal stop. Here, increment is assumed to be 1, so start will have to
less than stop.

• Optionally, start can be skipped, and it will automatically start from 0, like this:

for : var in :stop {
statement 1
....
....

}

• Optionally, increment can also be specified like this. Here, stop can be less than start if
increment is negative.

for : var in start:stop:increment {
statement 1
....
....

}

• Note : var is a integer, and start, stop, increment can be arithmetic expression, integer or
character variable, or integer or character constant.

114 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Examples

int sum := 0;

for : i in 1:4 {
sum = sum + i;

}

int mx := 32;
int nt;

for : j in 2:mx-10 {
nt := nt + j;

}

int sum := 0;

for : i in in 10:1:-2 { /*10, 8, 6, 4, 2*/
sum = sum + i;

}

While-loop statement

While loop statement repeatedly executes a target statement as long as a given condition is true.

Syntax

while : boolean_expression {
statement 1
...
...

}

Examples

• Infinite loop

while true {
do_something..
...

}

• Normal loop, will repeat 30 times, before exiting

int tag := 0;

while : tag < 30 {
tag := tag + 1;

}

Control statements

• Note : break and continue can only be used inside looping statements

3.1. simpPRU 115

BeagleBoard Docs, Release 0.0.9

break break is used to break execution in a loop statement, either for loop or while loop. It exits
the loop upon calling.

Syntax break;

Examples

for : i in 0:9 {
if : i == 3 {

break;
}

}

continue continue is used to continue execution in a loop statement, either for loop or while loop.

Syntax continue;

Examples

for : j in 9:19 {
if : i == 12 {

continue;
}
else {

break;
}

}

Functions

Function definition A function is a group of statements that together perform a task. You can divide
up your code into separate functions. How you divide up your code among different functions is up
to you, but logically the division usually is such that each function performs a specific task. A function
declaration tells the compiler about a function’s name, return type, and parameters. A function definition
provides the actual body of the function.

• Warning : Function must be defined before calling it.

Syntax

def <function_name> : <data_type> : <data_type> <param_name>, <data_type> <param_name>
→˓, ... {

statement 1;
...
...

return <data_type>;
}

• Note : If return data type is void, then return statement is not

needed, and if still it is added, it must be return nothing, i.e., something like this return ;

• Warning : return can only be present in the body of the function

only once, that too at the end of the function, not inside any compound statements.

116 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

• Wrong : return inside a compound statement, this syntax is not allowed.

def test : int : int a {
if : a < 4 {
return a;
}
}

• Correct : return is not inside compound statments, It should be placed only at the end of function
definition

def test : int : int a {
int gf := 8;
if : a < 4
{
gf := 4;
}
return gf;
}

Examples Examples according to return types

• Integer

def test_func : int : int a, int b
{

int aa := a + 5;
if : aa < 3 {

aa : = 0;
}

return aa + b;
}

• Character

def next_char : char : char ch, int inc {
char chinc := ch + inc;
return chinc;

}

• Boolean

def compare : bool : int val {
bool ret :=false;

if : val < 0 {
ret := true;

}
return ret;

}

• Void

def example_func_v : void : {
int temp := 90;

return;
}

3.1. simpPRU 117

BeagleBoard Docs, Release 0.0.9

Function call Functions can be called only if, they have been defined earlier. They return data types
according to their definition. Parameters are passed by value. Only pass by value is supported as of now.

Syntax

function_name(var1, var2, ..);

Examples

• Integer int a := 55; int ret_val := test_func(4, a);

• Character char a := 'a'; char b := next_char(a, 1);

• Boolean bool val := compare(22); compare(-2);

• Void example_func(false); example_func_v();

Testing or Debugging For testing or debugging code, use the –test or -t flag to enable print, println
and stub functions. Use –preprocess to stop after generating the C code only. Then run the generated C
code (at /tmp/temp.c) using gcc.

Print functions print can take either a string (double quoted) or any int / char / bool identifier.

println is similar to print but also prints a newline (\n).

Examples

print("Hello World!");
int a := 2;
print(a);
a := a + 2;
print(a);
println("");

Stub functions PRU specific functions will be replaced by stub functions which print function_name
called with arguments arg_name when called.

3.1.5 IO Functions

• All Header pins are constant integer variable by default, with its value equal to respective
R30/R31 register bit

– Example: P1_20 is an constant integer variable with value 16, similary P1_02 is an constant
integer variable with value 9

Digital Write

digital_write is a function which enables PRU to write given logic level at specified output pin. It is a
function with void return type and it’s parameters are integer and boolean, first parameter is the pin
number to write to or PRU R30 register bit and second parameter is boolean value to be written. true
for HIGH and false for LOW.

Syntax digital_write(pin_number, value);

118 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Parameters

• pin_number is an integer. It must be a header pin name which supports output, or PRU R30
Register bit.

• value is a boolean. It is used to set logic level of the output pin, true for HIGH and false for
LOW.

Return Type

• void - returns nothing.

Example

int a := 32;

if : a < 32 {
digital_write(P1_29, true);

}
else {

digital_write(P1_29, false);
}

If the value of a < 32, then pin P1_29 is set to HIGH or else it is set to LOW.

Digital Read

digital_read is a function which enables PRU to read logic level at specified input pin. It is a function
with return type boolean and it’s parameter is a integer whose value must be the pin number to be
read or PRU R31 register bit.

Syntax digital_read(pin_number);

Parameters

• pin_number is an integer. It must be a header pin name which supports input, or PRU R31 Register
bit.

Return Type

• boolean - returns the logic level of the pin number passed to it. It returns true for HIGH and false
for LOW.

Example

if digital_read(P1_20) {
digital_write(P1_29, false);

}
else {

digital_write(P1_29, true);
}

Logic level of pin P1_20 is read. If it is HIGH, then pin P1_29 is set to LOW, or else it is set to HIGH.

3.1. simpPRU 119

BeagleBoard Docs, Release 0.0.9

Delay

delay is a function which makes PRU wait for specified milliseconds. When this is called PRU does
absolutely nothing, it just sits there waiting.

Syntax delay(time_in_ms);

Parameters

• time_in_ms is an integer. It is the amount of time PRU should wait in milliseconds. (1000 millisec-
onds = 1 second).

Return Type

• void - returns nothing.

Example

digital_write(P1_29, true);
delay(2000);
digital_write(P1_29, false);

Logic level of pin P1_29 is set to HIGH, PRU waits for 2000 ms = 2 seconds, and then sets the logic level
of pin P1_29 to LOW.

Start counter

start_counter is a function which starts PRU’s internal counter. It counts number of CPU cycles. So it
can be used to count time elapsed, as it is known that each cycle takes 5 nanoseconds.

Syntax start_counter()

Paramters

• n/a

Return Type

• void - returns nothing.

Example

start_counter();

Stop counter

stop_counter is a function which stops PRU’s internal counter.

Syntax stop_counter()

120 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Paramters

• n/a

Return Type

• void - returns nothing.

Example

stop_counter();

Read counter

read_counter is a function which reads PRU’s internal counter and returns the value. It counts number
of CPU cycles. So it can be used to count time elapsed, as it is known that each cycle takes 5 nanoseconds.

Syntax read_counter()

Parameters

• n/a

Return Type

• integer - returns the number of cycles elapsed since calling start_counter.

Example

start_counter();

while : read_counter < 200000000 {
digital_write(P1_29, true);

}

digital_write(P1_29, false);
stop_counter();

while the value of hardware counter is less than 200000000, it will set logic level of pin P1_29 to HIGH,
after that it will set it to LOW. Here, 200000000 cpu cycles means 1 second of time, as CPU clock is 200
MHz. So, LED will turn on for 1 second, and turn off after.

Init message channel

init_message_channel is a function which is used to initialise communication channel between PRU
and the ARM core. It is sets up necessary structures to use RPMSG to communicate, it expects a init
message from the ARM core to initialise. It is a necessary to call this function before using any of the
message functions.

Syntax init_message_channel()

Parameters

• n/a

3.1. simpPRU 121

BeagleBoard Docs, Release 0.0.9

Return Type

• void - returns nothing

Example

init_message_channel();

Receive message

receive_message is a function which is used to receive messages from ARM to the PRU, messages
can only be integers, as only they are supported as of now. It uses RPMSG channel setup by
init_message_channel to receive messages from ARM core.

Syntax receive_message()

Parameters

• n/a

Return Type

• integer - returns integer data received from PRU

Example

init_message_channel();

int emp := receive_message();

if : emp >= 0 {
digital_write(P1_29, true);

}
else {

digital_write(P1_29, false);
}

Send message

There are six functions which are used to send messages to ARM core from PRU, messages can be
integers, characters, bools, integer arrays, character arrays, and boolean arrays. It uses
RPMSG channel setup by init_message_channel to send messages from PRU to the ARM core.

For sending arrays, arrays are automatically converted to a string, for example, [1, 2, 3, 4] would become
“1 2 3 4”.

Syntax

• send_int(expression)

• send_char(expression)

• send_bool(expression)

• send_ints(identifier)

• send_chars(identifier)

122 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

• send_bools(identifier)

• send_message is an alias for send_int to preserve backwards compatibility.

Parameters

• For send_int and send_char, expression would be an arithmetic expression.

• For send_bool, expression would be a boolean expression

• For send_ints, identifier should be an identifier for an integer array.

• For send_chars, identifier should be an identifier for a character array.

• For send_bools, identifier should be an identifier for a boolean array.

Example

init_message_channel();

if : digital_read(P1_29) {
send_bool(true);

}
else {

send_int(0);
}

3.1.6 Usage(simppru)

simppru [OPTION...] FILE

--device=<device_name> Select for which BeagleBoard to compile
(pocketbeagle, bbb, bbbwireless, bbai)

--load Load generated firmware to /lib/firmware/
-o, --output=<file> Place the output into <file>
-p, --pru=<pru_id> Select which pru id (0/1) for which program is to

be compiled
--verbose Enable verbose mode (dump symbol table and ast

graph)
--preprocess Stop after generating the intermediate C

file (located at /tmp/temp.c)
-t --test Use stub functions for PRU specific functions and

enable the print functions, useful for testing and␣
→˓debugging
-?, --help Give this help list

--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

simppru autodetects BeagleBoard model and automatically configures pin mux using config-pin. This
functionality doesn’t work on BeagleBone Blue and AI.

Say we have to compile a example file called test.sim, command will be as follows:

simppru test.sim --load

If we only want to generate binary for pru0

3.1. simpPRU 123

BeagleBoard Docs, Release 0.0.9

simppru test.sim -o test_firmware -p 0

this will generate a file named test_firmware.pru0

3.1.7 Usage(simppru-console)

simppru-console is a console app, it can be used to send/receive message to the PRU using RPMSG, and
also start/stop the PRU. It is built to facilitate easier way to use rpmsg and remoteproc API’s to control
and communicate with the PRU

• Warning : Make sure to stop PRU before exiting. Press ctrl+c to exit

Features

Use arrow keys to navigate around the textbox and buttons.

Start/stop buttons Use these button to start/stop the selected PRU. If PRU is already running, on
starting simppru-console, it is automatically stopped.

124 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Send message to PRU Use this text box to send data to the PRU, only Integers are supported. On
pressing enter, the typed message is sent.

PRU0 is running echo program, whatever is sent is echoed back.

3.1. simpPRU 125

BeagleBoard Docs, Release 0.0.9

Receive message from PRU The large box in the screen shows data received from the PRU, It runs
using a for loop, which checks if new message is arrived every 10 ms.

• PRU is running echo program, whatever is sent is echoed back.

• PRU is running countup program, it sends a increasing count every 1 second, which starts from 0

126 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Change PRU ID Using the radio box in the upper right corner, one can change the PRU id, i.e. if one
wants to use the features for PRU0 or PRU1

3.1.8 simpPRU Examples

These are the examples which have been tested on simpPRU.These examples will serve as a guide for the
users to implement.

3.1. simpPRU 127

BeagleBoard Docs, Release 0.0.9

Delay example

Code

digital_write(P1_31, true);
delay(2000);
digital_write(P1_31, false);
delay(5000);
digital_write(P1_31, true);

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code snippet writes HIGH to header pin P1_31, then waits for 2000ms using the
delay call, after that it writes LOW to header pin P1_31, then again waits for 5000ms using the delay
call, and finally writes HIGH to header pin P1_31.

128 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Digital read example

Code

while : true {
if : digital_read(P1_29) {

digital_write(P1_31, false);
}
else {

digital_write(P1_31, true);
}

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs a never ending loop, since it is while : true. Inside while it checks if
header pin P1_29 is HIGH or LOW. If header pin P1_29 is HIGH, header pin P1_31 is set to LOW, and if
header pin P1_29 is LOW, header pin P1_31 is set to HIGH.

3.1. simpPRU 129

BeagleBoard Docs, Release 0.0.9

Digital write example

Code

while : true {
digital_write(P1_31, true);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs a never ending loop, since it is while : true. Inside while it sets header
pin P1_31 to HIGH.

130 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

HCSR04 Distance Sensor example (sending distance data to ARM using RPMSG)

Code

def measure : int : {
bool timeout := false;
int echo := -1;

start_counter();

while : read_counter() <= 2000 {
digital_write(5, true);

}
digital_write(5, false);
stop_counter();

start_counter();
while : not (digital_read(6)) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
}
stop_counter();

if : not(timeout) and true {
start_counter();
while : digital_read(6) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

(continues on next page)

3.1. simpPRU 131

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

}
echo := read_counter();

}
stop_counter();

}

if : timeout and true {
echo := 0;

}

return echo;
}

init_message_channel();

while : true {
int ping:= measure();

send_message(ping);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination

Ultrasonic range sensor example

132 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Code

def measure : int : {
bool timeout := false;
int echo := 0;

start_counter();

while : read_counter() <= 2000 {
digital_write(7, true);

}
digital_write(7, false);
stop_counter();

start_counter();
while : not (digital_read(1)) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
}
stop_counter();

if : not(timeout) and true {
start_counter();
while : digital_read(1) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
echo := read_counter();

}
stop_counter();

}

if : timeout and true {
echo := 0;

}

return echo;
}

while : true {
int ping:= measure()*1000;

if : ping > 292200 {
digital_write(4, false);

}
else
{

digital_write(4, true);
}
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination

3.1. simpPRU 133

BeagleBoard Docs, Release 0.0.9

Sending state of button using RPMSG

Code

init_message_channel();

while : true {
if : digital_read(P1_29) {

send_message(1);
}
else {

send_message(0);
}
delay(100);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination init_message_channel is needed to setup communication channel between ARM<-
>PRU. It only needs to be called once, before using RPMSG functions.

while : true loop runs endlessly, inside this, we check for value of header pin P1_29, if it reads HIGH,
1 is sent to the ARM core using send_message and if it is LOW, 0 is sent to ARM core using send_message.
Then PRU waits for 100ms, and repeats the steps again and again.

134 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

LED blink on button press example

Code

while : true {
if : digital_read(P1_29) {

digital_write(P1_31, false);
}
else {

digital_write(P1_31, true);
}

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs a never ending loop, since it is while : true. Inside while if header
pin P1_29 is HIGH, then header pin P1_31 is set to HIGH, waits for 1000ms, then sets header pin P1_31
to LOW, then again it waits for 1000ms. This loop runs endlessly as long as header pin P1_29 is HIGH,
so we get a Blinking output if one connects a LED to output pin.

3.1. simpPRU 135

BeagleBoard Docs, Release 0.0.9

LED blink using for loop example

Code

for : l in 0:10 {
digital_write(P1_31, true);
delay(1000);
digital_write(P1_31, false);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs for loop with 10 iterations, Inside for it sets header pin P1_31 to HIGH,
waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits for 1000ms. This loop runs
endlessly, so we get a Blinking output if one connects a LED. So LED will blink 10 times with this code.

136 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

LED blink using while loop example

Code

while : true {
digital_write(P1_31, true);
delay(1000);
digital_write(P1_31, false);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs a never ending while loop, since it is while : true. Inside while it sets
header pin P1_31 to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits
for 1000ms. This loop runs endlessly, so we get a Blinking output if one connects a LED

3.1. simpPRU 137

BeagleBoard Docs, Release 0.0.9

LED blink example

Code

while : 1 == 1 {
digital_write(P1_31, true);
delay(1000);
digital_write(P1_31, false);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs a never ending loop, since it is while : true. Inside while it sets
header pin P1_31 to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits
for 1000ms. This loop runs endlessly, so we get a Blinking output if one connects a LED

138 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

LED blink using hardware counter

Code

while : true {
start_counter();
while : read_counter() < 200000000 {

digital_write(P1_31, true);
}
stop_counter();

start_counter();
while : read_counter() < 200000000 {

digital_write(P1_31, false);
}
stop_counter();

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination This code runs a never ending while loop, since it is while : true. Inside while it
starts the counter, then in a nested while loop, which runs as long as read_counter returns values less
than 200000000, so for 200000000 cycles, HIGH is written to header pin P1_31, and after the while
loop ends, the counter is stopped.

Similarly counter is started again, which runs as long as read_counter returns a value less than
200000000, so for 200000000 cycles, LOW is written to header pin P1_31, and after the while loop
ends, the counter is stopped.

This process goes on endlessly as it is inside a never ending while loop. Here, we check if read_counter
is less than 200000000, as counter takes exactly 1 second to count this much cycles, so basically the LED

3.1. simpPRU 139

BeagleBoard Docs, Release 0.0.9

is turned on for 1 second, and then turned off for 1 second. Thus if a LED is connected to the pin, we get
a endlessly blinking LED.

Read hardware counter example

Code

start_counter();
while : read_counter() < 200000000 {

digital_write(4, true);
}
stop_counter();

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination Since, PRU’s hardware counter works at 200 MHz, it counts upto 2 x 108 cycles in 1
second. So, this can be reliably used to count time without using delay, as we can find exactly how
much time 1 cycle takes.

2 x 108 cycles/second.
1 Cycles = 0.5 x 10-8 seconds.

So, it can be used to count how many cycles have passed since, say we received a high input on pin
3. start_counter starts the counter, and read_counter reads the current state of the counter, and
stop_counter stops the counter.

Using RPMSG to communicate with ARM core

Code

init_message_channel();

int count := receive_message();

while : true {
send_message(count);
count := count + 1;
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination PRU has a functionality to communicate with the ARM core, it is called RPMSG. This
examples show how to use RPMSG functionality to communicate with ARM core using RPMSG.

init_message_channel is needed to setup communication channel between ARM<->PRU. It only needs
to be called once, before using RPMSG functions.

int count := receive_message(); waits for a message from ARM Core, we need to send some integer
to PRU with which to start the counting. So, say we send 3, then int variable count will be equal to 3.

After this, there is while : true block which runs endlessly. Inside the block there is a send_message
call, this sends message back to the ARM Core.

So, inside the for loop we are sending value of count variable, after this we increase value of count by 1.
Then we wait for 1000ms, and repeat the above steps again and again.

140 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

Using RPMSG to implement a simple calculator on PRU

Code

init_message_channel();

while : true {
int option := receive_message();
int a := receive_message();
int b := receive_message();

if : option == 1 {
send_message(a+b);

}
elif : option == 2 {

send_message(a-b);
}
elif : option == 3 {

send_message(a*b);
}
elif : option == 4 {

if : b != 0 {
send_message(a/b);

}
else {

send_message(a);
}

}
else
{

send_message(a+b);
}

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explaination init_message_channel(); starts the message channel for communication with ARM
<-> PRU cores. Then while : true loops runs endlessly.

int option := receive_message(); receives which operator to be executed and stores it in op-
tion variable. 1 for addition, 2 for subtractions, 3 for multiplication and 4 for division. int a :=
receive_message(); receives the value of first operand, and int b := receive_message(); receives
the value of second operand.

if-elseif ladder checks if value of option is 1, 2, 3 or 4 and accordingly sends the value of operation back
to ARM core using send_message. While division, it makes sure that divisor is not 0. If value of option
is anything other than 1, 2, 3, 4, then it defaults to else condition, that is a+b.

This runs endlessly since it is inside a while : true loop.

3.2 BB-Config

3.2.1 BB-Config Detail

Configure your beagle devices easily.

Github

3.2. BB-Config 141

https://git.beagleboard.org/gsoc/bb-config

BeagleBoard Docs, Release 0.0.9

What is BB-Config

BB-Config is a software that makes the most common low-level configuration changes in beagle devices
easily and provides a terminal UI.

BB-Config is using FTXUI (C++ Functional Terminal User Interface) which have simple and elegant UI
looking.

142 Chapter 3. Projects

https://github.com/ArthurSonzogni/FTXUI

BeagleBoard Docs, Release 0.0.9

Look Like

3.2.2 Build from Source

Dependencies

• g++

• cmake

• glib-2.0

• libnm

Build

git clone https://git.beagleboard.org/gsoc/bb-config
cd bb-config
mkdir build
cd build
cmake ..
make -j$(nproc)

Install

sudo make install

3.2.3 Features

BB-Config v1.x

PRU Enable/Disable

• Enable/Disable PRU

3.2. BB-Config 143

BeagleBoard Docs, Release 0.0.9

GPIO

• Turn On/Off gpio

GPIO Menu

144 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

GPIO Setting

EMMC and MicroSD Stats

• Storage stats & grow partition

LEDs

• Config board build in LEDs

3.2. BB-Config 145

BeagleBoard Docs, Release 0.0.9

Password

• Change users password

SSH

• Enable/Disable SSH

146 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

WiFi

• Connect to Wi-Fi

3.2. BB-Config 147

BeagleBoard Docs, Release 0.0.9

Internet Sharing and Client Config

• Note: You’ll have to configure your host Following is an example script:

About

BB-Config v2.x

ADC (Graph)

• Plot graph for Analogue pin

148 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

DAC (PWM)

• Generate PWM waveform

3.2. BB-Config 149

BeagleBoard Docs, Release 0.0.9

uEnv

• Enable/Disable boot configuration

services

• Enable/Disable services startup at boot

150 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

PINMUX

• Display PIN I/O detail

• Config PINMUX

Hardware Display

3.2. BB-Config 151

BeagleBoard Docs, Release 0.0.9

Pin Table Refernce

Pin Config

Overlay (dts)

• Enable/Disable Device Tree Overlay in Boot option

• Select dtbo file and automate update in uEnv.txt

152 Chapter 3. Projects

BeagleBoard Docs, Release 0.0.9

WiFi (D-Bus)

• Connect to WiFi with wpa_supplicant

• Support for Debian 11

3.2.4 Version

GSOC@21 BB-Config v1.x

• Name: Shreyas Atre

• Mentors: Arthur Sonzogni, Abhishek Kumar, Deepak Khatri.

• Organization: BeagleBoard.org

• Code: https://github.com/SAtacker/beagle-config

• Project Page: https://summerofcode.withgoogle.com/projects/#6718016412188672

3.2. BB-Config 153

https://github.com/SAtacker/beagle-config
https://summerofcode.withgoogle.com/projects/#6718016412188672

BeagleBoard Docs, Release 0.0.9

• Progress Log: https://satacker.github.io/gsoc-log/

• Kanban: https://github.com/SAtacker/beagle-config/projects/1

• Initial Video: https://youtu.be/vFUWCzqE6xI

GSOC@22 BB-Config v2.x

• Name: Seak Jian De

• Mentors: Shreyas Atre, Vedant Paranjape, Vaishnav Achath.

• Organization: BeagleBoard.org

• Code: https://git.beagleboard.org/gsoc/bb-config

• Project Page: https://summerofcode.withgoogle.com/programs/2022/projects/2DbiYPlY

• Progress Log: https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/
32357/2

• Initial Video: https://youtu.be/V_Euk5uWY1o

154 Chapter 3. Projects

https://satacker.github.io/gsoc-log/
https://github.com/SAtacker/beagle-config/projects/1
https://youtu.be/vFUWCzqE6xI
https://git.beagleboard.org/gsoc/bb-config
https://summerofcode.withgoogle.com/programs/2022/projects/2DbiYPlY
https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/32357/2
https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/32357/2
https://youtu.be/V_Euk5uWY1o

Chapter 4

Books

This is a collection of open-source books written to help Beagle developers.

BeagleBone Cookbook is a great introduction to programming a BeagleBone using Linux from userspace,
mostly using Python or JavaScript.

PRU Cookbook provides numerous examples on using the incredible ultra-low-latency microcontrollers
inside the processors used on BeagleBone boards that are a big part of what has made BeagleBone such
a popular platform.

Links to additional books available for purchase can be found on the Beagle books page.

4.1 BeagleBone Cookbook

Contributors

• Author: Mark A. Yoder

• Book revision: v2.0 beta

A cookbook for programming Beagles

4.1.1 Basics

When you buy BeagleBone Black, pretty much everything you need to get going comes with it. You can
just plug it into the USB of a host computer, and it works. The goal of this chapter is to show what you
can do with your Bone, right out of the box. It has enough information to carry through the next three
chapters on sensors (Sensors), displays (Displays and Other Outputs), and motors (Motors).

Picking Your Beagle

Problem There are many different BeagleBoards. How do you pick which one to use?

Solution Current list of boards: https://git.beagleboard.org/explore/projects/topics/boards

Discussion

155

https://beagleboard.org/books
mailto:Mark.A.Yoder@Rose-Hulman.edu
https://git.beagleboard.org/explore/projects/topics/boards

BeagleBoard Docs, Release 0.0.9

Getting Started, Out of the Box

Problem You just got your Bone, and you want to know what to do with it.

Solution Fortunately, you have all you need to get running: your Bone and a USB cable. Plug the USB
cable into your host computer (Mac, Windows, or Linux) and plug the mini-USB connector side into the
USB connector near the Ethernet connector on the Bone, as shown in Plugging BeagleBone Black into a
USB port.

Fig. 4.1: Plugging BeagleBone Black into a USB port

The four blue USER LEDs will begin to blink, and in 10 or 15 seconds, you’ll see a new USB drive appear
on your host computer. The Bone appears as a USB drive shows how it will appear on a Windows host,
and Linux and Mac hosts will look similar. The Bone acting like a USB drive and the files you see are
located on the Bone.

Browse to http://192.168.7.2:3000 from your host computer (Visual Studio Code).

Here, you’ll find Visual Studio Code, a web-based integrated development environment (IDE) that lets
you edit and run code on your Bone! See :ref: basics_vsc for more details.

Warning:

Make sure you turn off your Bone properly. It’s best to run the halt command:

bone$ sudo halt

The system is going down for system halt NOW! (pts/0)

156 Chapter 4. Books

http://192.168.7.2:3000

BeagleBoard Docs, Release 0.0.9

Fig. 4.2: The Bone appears as a USB drive

4.1. BeagleBone Cookbook 157

BeagleBoard Docs, Release 0.0.9

Fig. 4.3: Visual Studio Code

158 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

This will ensure that the Bone shuts down correctly. If you just pull the power, it is possible that open
files would not close properly and might become corrupt.

Discussion The rest of this book goes into the details behind this quick out-of-the-box demo. Explore
your Bone and then start exploring the book.

Verifying You Have the Latest Version of the OS on Your Bone

Problem You just got BeagleBone Black, and you want to know which version of the operating system
it’s running.

Solution This book uses Debian, the Linux distribution that currently ships on the Bone. However this
book is based on a newer version (BeagleBoard.org Debian Bullseye IoT Image 2022-07-01) than what
is shipping at the time of this writing. You can see which version your Bone is running by following the
instructions in Getting Started, Out of the Box to log into the Bone. Then run:

bone$ cat /ID.txt
BeagleBoard.org Debian Bullseye IoT Image 2022-07-01

I’m running the 2022-07-01 version.

Running the Python and JavaScript Examples

Problem You’d like to learn Python and JavaScript interact with the Bone to perform physical comput-
ing tasks without first learning Linux.

Solution Plug your board into the USB of your host computer and browse to http://192.168.7.2:3000
using Google Chrome or Firefox (as shown in Getting Started, Out of the Box). In the left column, click
on EXAMPLES, then BeagleBone and then Black. Several sample scripts will appear. Go and explore them.

Tip: Explore the various demonstrations of Python and JavaScript. These are what come with the Bone.
In Cloning the Cookbook Repository you see how to load the examples for the Cookbook.

Cloning the Cookbook Repository

Problem You want to run the Cookbook examples.

Solution Connect your Bone to the Internet and log into it. From the command line run:

bone$ git clone git@github.com:MarkAYoder/BoneCookbook.git
bone$ cd BoneCookbook/docs
bone$ ls

You can look around from the command line, or explore from Visual Sudio Code. If you ar using VSC,
go to the File menu and select Open Folder . . . and select BoneCookbook/docs. Then explore. You’ll find
there is a directory for each chapter and most chapters have a code directory for the sample scripts and
a figures directory for the figures.

4.1. BeagleBone Cookbook 159

https://www.debian.org
http://192.168.7.2:3000

BeagleBoard Docs, Release 0.0.9

Wiring a Breadboard

Problem You would like to use a breadboard to wire things to the Bone.

Solution Many of the projects in this book involve interfacing things to the Bone. Some plug in directly,
like the USB port. Others need to be wired. If it’s simple, you might be able to plug the wires directly
into the P8 or P9 headers. Nevertheless, many require a breadboard for the fastest and simplest wiring.

To make this recipe, you will need:

• Breadboard and jumper wires

The Breadboard wired to BeagleBone Black shows a breadboard wired to the Bone. All the diagrams in
this book assume that the ground pin (P9_1 on the Bone) is wired to the negative rail and 3.3 V (P9_3)
is wired to the positive rail.

Breadboard wired to BeagleBone Black

Editing Code Using Visual Studio Code

Problem You want to edit and debug files on the Bone.

Solution Plug your Bone into a host computer via the USB cable. Open a browser (either Google
Chrome or FireFox will work) on your host computer (as shown in Getting Started, Out of the Box). After
the Bone has booted up, browse to http://192.168.7.2:3000 on your host. You will see something like
Visual Studio Code.

Click the EXAMPLES folder on the left and then click BeagleBoard and then Black, finally double-click
seqLEDs.py. You can now edit the file.

Note: If you edit lines 33 and 37 of the seqLEDs.py file (time.sleep(0.25)), changing 0.25 to 0.1, the
LEDs next to the Ethernet port on your Bone will flash roughly twice as fast.

Running Python and JavaScript Applications from Visual Studio Code

Problem You have a file edited in VS Code, and you want to run it.

Solution VS Code has a bash command window built in at the bottom of the window. If it’s not there,
hit Ctrl-Shift-P and then type terminal create new then hit Enter. The terminal will appear at the bottom
of the screen. You can run your code from this window. To do so, add #!/usr/bin/env python at the
top of the file that you want to run and save.

Tip: If you are running JavaScript, replace the word python in the line with node.

At the bottom of the VS Code window are a series of tabs (Visual Studio Code showing bash terminal).
Click the TERMINAL tab. Here, you have a command prompt.

Change to the directory that contains your file, make it executable, and then run it:

bone$ cd ~/examples/BeagleBone/Black/
bone$./seqLEDs.py

The cd is the change directory command. After you cd, you are in a new directory. Finally, ./seqLEDs.py
instructs the python script to run. You will need to press ^C (Ctrl-C) to stop your program.

160 Chapter 4. Books

http://192.168.7.2:3000

BeagleBoard Docs, Release 0.0.9

Fig. 4.4: Visual Studio Code showing bash terminal

4.1. BeagleBone Cookbook 161

BeagleBoard Docs, Release 0.0.9

Finding the Latest Version of the OS for Your Bone

Problem You want to find out the latest version of Debian that is available for your Bone.

Solution On your host computer, open a browser and go to https://forum.beagleboard.org/tag/
latest-images This shows you a list of dates of the most recent Debian images (Latest Debian images).

Fig. 4.5: Latest Debian images

At the time of writing, we are using the Bullseye image. Click on it’s link. Scrolling up you’ll find Latest
Debian images. There are three types of snapshots, Minimal, IoT and Xfce Desktop. IoT is the one we are
running.

These are the images you want to use if you are flashing a Rev C BeagleBone Black onboard flash, or
flashing a 4 GB or bigger miscroSD card. The image beginning with am335x-debian-11.3-iot- is used for
the non-AI boards. The one beginning with am57xx-debian- is for programming the Beagle AI’s.

Note: The onboard flash is often called the eMMC memory. We just call it onboard flash, but you’ll often
see eMMC appearing in filenames of images used to update the onboard flash.

Click the image you want to use and it will download. The images are some 500M, so it might take a
while.

162 Chapter 4. Books

https://forum.beagleboard.org/tag/latest-images
https://forum.beagleboard.org/tag/latest-images

BeagleBoard Docs, Release 0.0.9

Fig. 4.6: Latest Debian images

Running the Latest Version of the OS on Your Bone

Problem You want to run the latest version of the operating system on your Bone without changing
the onboard flash.

Solution This solution is to flash an external microSD card and run the Bone from it. If you boot the
Bone with a microSD card inserted with a valid boot image, it will boot from the microSD card. If you
boot without the microSD card installed, it will boot from the onboard flash.

Tip: If you want to reflash the onboard flash memory, see Updating the Onboard Flash.

Note: I instruct my students to use the microSD for booting. I suggest they keep an extra microSD
flashed with the current OS. If they mess up the one on the Bone, it takes only a moment to swap in
the extra microSD, boot up, and continue running. If they are running off the onboard flash, it will take
much longer to reflash and boot from it.

Download the image you found in Finding the Latest Version of the OS for Your Bone. It’s more than 500
MB, so be sure to have a fast Internet connection. Then go to http://beagleboard.org/getting-started#
update and follow the instructions there to install the image you downloaded.

Updating the OS on Your Bone

Problem You’ve installed the latest version of Debian on your Bone (Running the Latest Version of the
OS on Your Bone), and you want to be sure it’s up-to-date.

4.1. BeagleBone Cookbook 163

http://beagleboard.org/getting-started#update
http://beagleboard.org/getting-started#update

BeagleBoard Docs, Release 0.0.9

Solution Ensure that your Bone is on the network and then run the following command on the Bone:

bone$ sudo apt update
bone$ sudo apt upgrade

If there are any new updates, they will be installed.

Note: If you get the error The following signatures were invalid: KEYEXPIRED 1418840246, see eLinux
support page for advice on how to fix it.

Discussion After you have a current image running on the Bone, it’s not at all difficult to keep it
upgraded.

Backing Up the Onboard Flash

Problem You’ve modified the state of your Bone in a way that you’d like to preserve or share.

Solution The eLinux wiki page on BeagleBone Black Extracting eMMC contents provides some simple
steps for copying the contents of the onboard flash to a file on a microSD card:

• Get a 4 GB or larger microSD card that is FAT formatted.

• If you create a FAT-formatted microSD card, you must edit the partition and ensure that it is a
bootable partition.

• Download beagleboneblack-save-emmc.zip and uncompress and copy the contents onto your mi-
croSD card.

• Eject the microSD card from your computer, insert it into the powered-off BeagleBone Black, and
apply power to your board.

• You’ll notice USER0 (the LED closest to the S1 button in the corner) will (after about 20 seconds)
begin to blink steadily, rather than the double-pulse “heartbeat” pattern that is typical when your
BeagleBone Black is running the standard Linux kernel configuration.

• It will run for a bit under 10 minutes and then USER0 will stay on steady. That’s your cue to remove
power, remove the microSD card, and put it back into your computer.

• You will see a file called BeagleBoneBlack-eMMC-image-XXXXX.img, where XXXXX is a set of random
numbers. Save this file to use for restoring your image later.

Note: Because the date won’t be set on your board, you might want to adjust the date on the file to
remember when you made it. For storage on your computer, these images will typically compress very
well, so use your favorite compression tool.

Tip: The eLinux wiki is the definitive place for the BeagleBoard.org community to share information
about the Beagles. Spend some time looking around for other helpful information.

Updating the Onboard Flash

Problem You want to copy the microSD card to the onboard flash.

164 Chapter 4. Books

http://bit.ly/1EXocb6
http://bit.ly/1EXocb6
Thehttp://elinux.org/Beagleboard
http://bit.ly/1C57I0a
http://bit.ly/1wtXwNP
Thehttp://elinux.org/Beagleboard

BeagleBoard Docs, Release 0.0.9

Solution If you want to update the onboard flash with the contents of the microSD card,

• Repeat the steps in Running the Latest Version of the OS on Your Bone to update the OS.

• Attach to an external 5 V source. you must be powered from an external 5 V source. The flashing
process requires more current than what typically can be pulled from USB.

• Boot from the microSD card.

• Log on to the bone and edit /boot/uEnv.txt.

• Uncomment out the last line cmdline=init=/usr/sbin/init-beagle-flasher.

• Save the file and reboot.

• The USR LEDs will flash back and forth for a few minutes.

• When they stop flashing, remove the SD card and reboot.

• You are now running from the newly flashed onboard flash.

Warning: If you write the onboard flash, be sure to power the Bone from an external 5 V source.
The USB might not supply enough current.

When you boot from the microSD card, it will copy the image to the onboard flash. When all four
USER LEDs turn off (in some versions, they all turn on), you can power down the Bone and remove the
microSD card. The next time you power up, the Bone will boot from the onboard flash.

4.1.2 Sensors

In this chapter, you will learn how to sense the physical world with BeagleBone Black. Various types of
electronic sensors, such as cameras and microphones, can be connected to the Bone using one or more
interfaces provided by the standard USB 2.0 host port, as shown in The USB 2.0 host port.

Note: All the examples in the book assume you have cloned the Cookbook repository on
www.github.com. Go here Cloning the Cookbook Repository for instructions.

The two 46-pin cape headers (called P8 and P9) along the long edges of the board (Cape Headers P8 and
P9) provide connections for cape add-on boards, digital and analog sensors, and more.

The simplest kind of sensor provides a single digital status, such as off or on, and can be handled by an
input mode of one of the Bone’s 65 general-purpose input/output (GPIO) pins. More complex sensors
can be connected by using one of the Bone’s seven analog-to-digital converter (ADC) inputs or several
I2C buses.

Displays and Other Outputs discusses some of the output mode usages of the GPIO pins.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and
run it, either within the Visual Studio Code (VSC) integrated development environment (IDE) or from
the command line (Getting to the Command Shell via SSH).

Choosing a Method to Connect Your Sensor

Problem You want to acquire and attach a sensor and need to understand your basic options.

4.1. BeagleBone Cookbook 165

BeagleBoard Docs, Release 0.0.9

Fig. 4.7: The USB 2.0 host port

Fig. 4.8: Cape Headers P8 and P9

166 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.9: Some of the many sensor connection options on the Bone

Solution Some of the many sensor connection options on the Bone shows many of the possibilities for
connecting a sensor.

Choosing the simplest solution available enables you to move on quickly to addressing other system
aspects. By exploring each connection type, you can make more informed decisions as you seek to
optimize and troubleshoot your design.

Input and Run a Python or JavaScript Application for Talking to Sensors

Problem You have your sensors all wired up and your Bone booted up, and you need to know how to
enter and run your code.

Solution You are just a few simple steps from running any of the recipes in this book.

• Plug your Bone into a host computer via the USB cable (Getting Started, Out of the Box).

• Start Visual Studio Code (Editing Code Using Visual Studio Code).

• In the bash tab (as shown in Entering commands in the VSC bash tab), run the following commands:

bone$ cd
bone$ cd BoneCookbook/docs/02sensors/code

Here, we issued the change directory (cd) command without specifying a target directory. By default, it
takes you to your home directory. Notice that the prompt has changed to reflect the change.

Note: If you log in as debian, your home is /home/debian. If you were to create a new user called
newuser, that user’s home would be /home/newuser. By default, all non-root (non-superuser) users have
their home directories in /home.

4.1. BeagleBone Cookbook 167

BeagleBoard Docs, Release 0.0.9

Fig. 4.10: Entering commands in the VSC bash tab

168 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Note: All the examples in the book assume you have cloned the Cookbook repository on
www.github.com. Go here Cloning the Cookbook Repository for instructions.

• Double-click the pushbutton.py file to open it.

• Press ^S (Ctrl-S) to save the file. (You can also go to the File menu in VSC and select Save to
save the file, but Ctrl-S is easier.) Even easier, VSC can be configured to autosave every so many
seconds.

• In the bash tab, enter the following commands:

root@beaglebone:~/boneSensors# ./pushbutton.js
data= 0
data= 0
data= 1
data= 1
^C

This process will work for any script in this book.

Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)

Problem You want to read a pushbutton, a magnetic switch, or other sensor that is electrically open or
closed.

Solution Connect the switch to a GPIO pin and read from the proper place in /sys/class/gpio.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Pushbutton switch.

• Magnetic reed switch.

You can wire up either a pushbutton, a magnetic reed switch, or both on the Bone, as shown in Diagram
for wiring a pushbutton and magnetic reed switch input.

The code in Monitoring a pushbutton (pushbutton.js) reads GPIO port P9_42, which is attached to the
pushbutton.

Listing 4.1: Monitoring a pushbutton (pushbutton.py)
1 #!/usr/bin/env python
2 # //
3 # // pushbutton.py
4 # // Reads P9_42 and prints its value.
5 # // Wiring: Connect a switch between P9_42 and 3.3V
6 # // Setup:
7 # // See:
8 # //
9 import time

10 import os
11

12 ms = 500 # Read time in ms
13 pin = '7' # P9_42 is gpio 7
14 GPIOPATH="/sys/class/gpio"
15

16 # Make sure pin is exported
(continues on next page)

4.1. BeagleBone Cookbook 169

BeagleBoard Docs, Release 0.0.9

Fig. 4.11: Diagram for wiring a pushbutton and magnetic reed switch input

(continued from previous page)

17 if (not os.path.exists(GPIOPATH+"/gpio"+pin)):
18 f = open(GPIOPATH+"/export", "w")
19 f.write(pin)
20 f.close()
21

22 # Make it an input pin
23 f = open(GPIOPATH+"/gpio"+pin+"/direction", "w")
24 f.write("in")
25 f.close()
26

27 f = open(GPIOPATH+"/gpio"+pin+"/value", "r")
28

29 while True:
30 f.seek(0)
31 data = f.read()[:-1]
32 print("data = " + data)
33 time.sleep(ms/1000)

pushbutton.py

Listing 4.2: Monitoring a pushbutton (pushbutton.js)
1 #!/usr/bin/env node
2 //
3 // pushbutton.js
4 // Reads P9_42 and prints its value.
5 // Wiring: Connect a switch between P9_42 and 3.3V
6 // Setup:
7 // See:
8 //

(continues on next page)

170 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

9 const fs = require("fs");
10

11 const ms = 500 // Read time in ms
12 const pin = '7'; // P9_42 is gpio 7
13 const GPIOPATH="/sys/class/gpio/";
14

15 // Make sure pin is exported
16 if(!fs.existsSync(GPIOPATH+"gpio"+pin)) {
17 fs.writeFileSync(GPIOPATH+"export", pin);
18 }
19 // Make it an input pin
20 fs.writeFileSync(GPIOPATH+"gpio"+pin+"/direction", "in");
21

22 // Read every ms
23 setInterval(readPin, ms);
24

25 function readPin() {
26 var data = fs.readFileSync(GPIOPATH+"gpio"+pin+"/value").slice(0, -1);
27 console.log('data = ' + data);
28 }

pushbutton.js

Put this code in a file called pushbutton.js following the steps in Input and Run a Python or JavaScript
Application for Talking to Sensors. In the VSC bash tab, run it by using the following commands:

bone$./pushbutton.js
data = 0
data = 0
data = 1
data = 1
^C

The command runs it. Try pushing the button. The code reads the pin and prints its current value.

You will have to press ^C (Ctrl-C) to stop the code.

If you want to use the magnetic reed switch wired as shown in Diagram for wiring a pushbutton and
magnetic reed switch input, change P9_42 to P9_26 which is gpio 14.

Mapping Header Numbers to gpio Numbers

Problem You have a sensor attached to the P8 or P9 header and need to know which gpio pin it’s using.

Solution The gpioinfo command displays information about all the P8 and P9 header pins. To see the
info for just one pin, use grep.

bone$ gpioinfo | grep -e chip -e P9.42
gpiochip0 - 32 lines:

line 7: "P8_42A [ecappwm0]" "P9_42" input active-high [used]
gpiochip1 - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

This shows P9_42 is on chip 0 and pin 7. To find the gpio number multiply the chip number by 32 and
add it to the pin number. This gives 0*32+7=7.

For P9_26 you get:

4.1. BeagleBone Cookbook 171

BeagleBoard Docs, Release 0.0.9

bone$ gpioinfo | grep -e chip -e P9.26
gpiochip0 - 32 lines:

line 14: "P9_26 [uart1_rxd]" "P9_26" input active-high [used]
gpiochip1 - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

0*32+14=14, so the P9_26 pin is gpio 14.

Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)

Problem You have a variable resistor, force-sensitive resistor, flex sensor, or any of a number of other
sensors that output their value as a variable resistance, and you want to read their value with the Bone.

Solution Use the Bone’s analog-to-digital converters (ADCs) and a resistor divider circuit to detect the
resistance in the sensor.

The Bone has seven built-in analog inputs that can easily read a resistive value. Seven analog inputs on
P9 header shows them on the lower part of the P9 header.

Fig. 4.12: Seven analog inputs on P9 header

To make this recipe, you will need:

• Breadboard and jumper wires.

• 10k trimpot or

• Flex resistor (optional)

• 22k resistor

A variable resistor with three terminals

172 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Wiring a 10k variable resistor (trimpot) to an ADC port shows a simple variable resistor (trimpot) wired
to the Bone. One end terminal is wired to the ADC 1.8 V power supply on pin P9_32, and the other
end terminal is attached to the ADC ground (P9_34). The middle terminal is wired to one of the seven
analog-in ports (P9_36).

Fig. 4.13: Wiring a 10k variable resistor (trimpot) to an ADC port

Reading an analog voltage (analogIn.js) shows the BoneScript code used to read the variable resistor. Add
the code to a file called _analogIn.js_ and run it; then change the resistor and run it again. The voltage
read will change.

Listing 4.3: Reading an analog voltage (analogIn.py)
1 #!/usr/bin/env python3
2 #//////////////////////////////////////
3 # analogin.py
4 # Reads the analog value of the light sensor.
5 #//////////////////////////////////////
6 import time
7 import os
8

9 pin = "2" # light sensor, A2, P9_37
10

11 IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw'
12

13 print('Hit ^C to stop')
14

15 f = open(IIOPATH, "r")
16

17 while True:
18 f.seek(0)
19 x = float(f.read())/4096
20 print('{} : {:.1f} %, {:.3f} V'.format(pin, 100*x, 1.8*x), end = '\r')
21 time.sleep(0.1)
22

(continues on next page)

4.1. BeagleBone Cookbook 173

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

23 # // Bone | Pocket | AIN
24 # // ----- | ------ | ---
25 # // P9_39 | P1_19 | 0
26 # // P9_40 | P1_21 | 1
27 # // P9_37 | P1_23 | 2
28 # // P9_38 | P1_25 | 3
29 # // P9_33 | P1_27 | 4
30 # // P9_36 | P2_35 | 5
31 # // P9_35 | P1_02 | 6

analogIn.py

Listing 4.4: Reading an analog voltage (analogIn.js)
1 #!/usr/bin/env node
2 //////////////////////////////////////
3 // analogin.js
4 // Reads the analog value of the light sensor.
5 //////////////////////////////////////
6 const fs = require("fs");
7 const ms = 500; // Time in milliseconds
8

9 const pin = "2"; // light sensor, A2, P9_37
10

11 const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';
12

13 console.log('Hit ^C to stop');
14

15 // Read every 500ms
16 setInterval(readPin, ms);
17

18 function readPin() {
19 var data = fs.readFileSync(IIOPATH).slice(0, -1);
20 console.log('data = ' + data);
21 }
22 // Bone | Pocket | AIN
23 // ----- | ------ | ---
24 // P9_39 | P1_19 | 0
25 // P9_40 | P1_21 | 1
26 // P9_37 | P1_23 | 2
27 // P9_38 | P1_25 | 3
28 // P9_33 | P1_27 | 4
29 // P9_36 | P2_35 | 5
30 // P9_35 | P1_02 | 6

analogIn.js

Note: The code in Reading an analog voltage (analogIn.js) outputs a value between 0 and 4096.

A variable resistor with two terminals

Some resistive sensors have only two terminals, such as the flex sensor in Reading a two-terminal flex
resistor The resistance between its two terminals changes when it is flexed. In this case, we need to add
a fixed resistor in series with the flex sensor. Reading a two-terminal flex resistor shows how to wire in a
22k resistor to give a voltage to measure across the flex sensor.

The code in Reading an analog voltage (analogIn.py) and Reading an analog voltage (analogIn.js) also
works for this setup.

174 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.14: Reading a two-terminal flex resistor

Reading a Distance Sensor (Analog or Variable Voltage Sensor)

Problem You want to measure distance with a LV-MaxSonar-EZ1 Sonar Range Finder, which outputs a
voltage in proportion to the distance.

Solution To make this recipe, you will need:

• Breadboard and jumper wires.

• LV-MaxSonar-EZ1 Sonar Range Finder

All you have to do is wire the EZ1 to one of the Bone’s analog-in pins, as shown in Wiring the LV-
MaxSonar-EZ1 Sonar Range Finder to the P9_33 analog-in port. The device outputs ~6.4 mV/in when
powered from 3.3 V.

Warning: Make sure not to apply more than 1.8 V to the Bone’s analog-in pins, or you will likely
damage them. In practice, this circuit should follow that rule.

Reading an analog voltage (ultrasonicRange.js) shows the code that reads the sensor at a fixed interval.

Listing 4.5: Reading an analog voltage (ultrasonicRange.py)
1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # // ultrasonicRange.js
4 # // Reads the analog value of the sensor.
5 # //////////////////////////////////////
6 import time
7 ms = 250; # Time in milliseconds
8

9 pin = "0" # sensor, A0, P9_39
10

11 IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw'
12

13 print('Hit ^C to stop');
14

15 f = open(IIOPATH, "r")
16 while True:
17 f.seek(0)
18 data = f.read()[:-1]

(continues on next page)

4.1. BeagleBone Cookbook 175

http://bit.ly/1Mt5Elr

BeagleBoard Docs, Release 0.0.9

Fig. 4.15: Wiring the LV-MaxSonar-EZ1 Sonar Range Finder to the P9_33 analog-in port

(continued from previous page)

19 print('data= ' + data)
20 time.sleep(ms/1000)
21

22 # // Bone | Pocket | AIN
23 # // ----- | ------ | ---
24 # // P9_39 | P1_19 | 0
25 # // P9_40 | P1_21 | 1
26 # // P9_37 | P1_23 | 2
27 # // P9_38 | P1_25 | 3
28 # // P9_33 | P1_27 | 4
29 # // P9_36 | P2_35 | 5
30 # // P9_35 | P1_02 | 6

ultrasonicRange.py

Listing 4.6: Reading an analog voltage (ultrasonicRange.js)
1 #!/usr/bin/env node
2 //////////////////////////////////////
3 // ultrasonicRange.js
4 // Reads the analog value of the sensor.
5 //////////////////////////////////////
6 const fs = require("fs");
7 const ms = 250; // Time in milliseconds
8

9 const pin = "0"; // sensor, A0, P9_39
10

11 const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';
12

13 console.log('Hit ^C to stop');
(continues on next page)

176 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

14

15 // Read every ms
16 setInterval(readPin, ms);
17

18 function readPin() {
19 var data = fs.readFileSync(IIOPATH);
20 console.log('data= ' + data);
21 }
22 // Bone | Pocket | AIN
23 // ----- | ------ | ---
24 // P9_39 | P1_19 | 0
25 // P9_40 | P1_21 | 1
26 // P9_37 | P1_23 | 2
27 // P9_38 | P1_25 | 3
28 // P9_33 | P1_27 | 4
29 // P9_36 | P2_35 | 5
30 // P9_35 | P1_02 | 6

ultrasonicRange.js

Reading a Distance Sensor (Variable Pulse Width Sensor)

Problem You want to use a HC-SR04 Ultrasonic Range Sensor with BeagleBone Black.

Solution The HC-SR04 Ultrasonic Range Sensor (shown in HC-SR04 Ultrasonic range sensor) works by
sending a trigger pulse to the Trigger input and then measuring the pulse width on the Echo output. The
width of the pulse tells you the distance.

Fig. 4.16: HC-SR04 Ultrasonic range sensor

To make this recipe, you will need:

• Breadboard and jumper wires.

4.1. BeagleBone Cookbook 177

BeagleBoard Docs, Release 0.0.9

• 10 k and 20 k resistors

• HC-SR04 Ultrsonic Range Sensor.

Wire the sensor as shown in Wiring an HC-SR04 Ultrasonic Sensor. Note that the HC-SR04 is a 5 V device,
so the banded wire (running from P9_7 on the Bone to VCC on the range finder) attaches the HC-SR04
to the Bone’s 5 V power supply.

Fig. 4.17: Wiring an HC-SR04 Ultrasonic Sensor

Driving a HC-SR04 ultrasound sensor (hc-sr04-ultraSonic.js) shows BoneScript code used to drive the
HC-SR04.

Listing 4.7: Driving a HC-SR04 ultrasound sensor (hc-sr04-
ultraSonic.js)

1 #!/usr/bin/env node
2

3 // This is an example of reading HC-SR04 Ultrasonic Range Finder
4 // This version measures from the fall of the Trigger pulse
5 // to the end of the Echo pulse
6

7 var b = require('bonescript');
8

9 var trigger = 'P9_16', // Pin to trigger the ultrasonic pulse
10 echo = 'P9_41', // Pin to measure to pulse width related to the distance
11 ms = 250; // Trigger period in ms
12

13 var startTime, pulseTime;
14

15 b.pinMode(echo, b.INPUT, 7, 'pulldown', 'fast', doAttach);
16 function doAttach(x) {
17 if(x.err) {
18 console.log('x.err = ' + x.err);
19 return;
20 }

(continues on next page)

178 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

21 // Call pingEnd when the pulse ends
22 b.attachInterrupt(echo, true, b.FALLING, pingEnd);
23 }
24

25 b.pinMode(trigger, b.OUTPUT);
26

27 b.digitalWrite(trigger, 1); // Unit triggers on a falling edge.
28 // Set trigger to high so we call pull it low later
29

30 // Pull the trigger low at a regular interval.
31 setInterval(ping, ms);
32

33 // Pull trigger low and start timing.
34 function ping() {
35 // console.log('ping');
36 b.digitalWrite(trigger, 0);
37 startTime = process.hrtime();
38 }
39

40 // Compute the total time and get ready to trigger again.
41 function pingEnd(x) {
42 if(x.attached) {
43 console.log("Interrupt handler attached");
44 return;
45 }
46 if(startTime) {
47 pulseTime = process.hrtime(startTime);
48 b.digitalWrite(trigger, 1);
49 console.log('pulseTime = ' + (pulseTime[1]/1000000-0.8).toFixed(3));
50 }
51 }

hc-sr04-ultraSonic.js

This code is more complex than others in this chapter, because we have to tell the device when to start
measuring and time the return pulse.

Accurately Reading the Position of a Motor or Dial

Problem You have a motor or dial and want to detect rotation using a rotary encoder.

Solution Use a rotary encoder (also called a quadrature encoder) connected to one of the Bone’s eQEP
ports, as shown in Wiring a rotary encoder using eQEP2.

Table 4.1: On the BeagleBone and PocketBeage the three encoders
are:

eQEP0 P9.27 and P9.42 OR P1_33 and P2_34
eQEP P9.33 and P9.35
eQEP2 P8.11 and P8.12 OR P2_24 and P2_33

Table 4.2: On the AI it’s:
eQEP1 P8.33 and P8.35
eQEP2 P8.11 and P8.12 or P9.19 and P9.41
eQEP3 P8.24 and P8.25 or P9.27 and P9.42

4.1. BeagleBone Cookbook 179

BeagleBoard Docs, Release 0.0.9

Fig. 4.18: Wiring a rotary encoder using eQEP2

To make this recipe, you will need:

• Breadboard and jumper wires.

• Rotary encoder.

We are using a quadrature rotary encoder, which has two switches inside that open and close in such
a manner that you can tell which way the shaft is turning. In this particular encoder, the two switches
have a common lead, which is wired to ground. It also has a pushbutton switch wired to the other side
of the device, which we aren’t using.

Wire the encoder to P8_11 and P8_12, as shown in Wiring a rotary encoder using eQEP2.

BeagleBone Black has built-in hardware for reading up to three encoders. Here, we’ll use the eQEP2
encoder via the Linux count subsystem.

Then run the following commands:

bone$ config-pin P8_11 qep
bone$ config-pin P8_12 qep
bone$ show-pins | grep qep
P8.12 12 fast rx up 4 qep 2 in A ocp/P8_12_pinmux (pinmux_P8_12_qep_pin)
P8.11 13 fast rx up 4 qep 2 in B ocp/P8_11_pinmux (pinmux_P8_11_qep_pin)

This will enable eQEP2 on pins P8_11 and P8_12. The 2 after the qep returned by show-pins shows it’s
eQEP2.

Finally, add the code in Reading a rotary encoder (rotaryEncoder.js) to a file named rotaryEncoder.js and
run it.

Listing 4.8: Reading a rotary encoder (rotaryEncoder.py)
1 #!/usr/bin/env python
2 # // This uses the eQEP hardware to read a rotary encoder
3 # // bone$ config-pin P8_11 eqep

(continues on next page)

180 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

4 # // bone$ config-pin P8_12 eqep
5 import time
6

7 eQEP = '2'
8 COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
9

10 ms = 100 # Time between samples in ms
11 maxCount = '1000000'
12

13 # Set the eEQP maximum count
14 f = open(COUNTERPATH+'/ceiling', 'w')
15 f.write(maxCount)
16 f.close()
17

18 # Enable
19 f = open(COUNTERPATH+'/enable', 'w')
20 f.write('1')
21 f.close()
22

23 f = open(COUNTERPATH+'/count', 'r')
24

25 olddata = -1
26 while True:
27 f.seek(0)
28 data = f.read()[:-1]
29 # Print only if data changes
30 if data != olddata:
31 olddata = data
32 print("data = " + data)
33 time.sleep(ms/1000)
34

35 # Black OR Pocket
36 # eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
37 # eQEP1: P9.33 and P9.35
38 # eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
39

40 # AI
41 # eQEP1: P8.33 and P8.35
42 # eQEP2: P8.11 and P8.12 or P9.19 and P9.41
43 # eQEP3: P8.24 abd P8.25 or P9.27 and P9.42

rotaryEncoder.py

Listing 4.9: Reading a rotary encoder (rotaryEncoder.js)
1 #!/usr/bin/env node
2 // This uses the eQEP hardware to read a rotary encoder
3 // bone$ config-pin P8_11 eqep
4 // bone$ config-pin P8_12 eqep
5 const fs = require("fs");
6

7 const eQEP = "2";
8 const COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0';
9

10 const ms = 100; // Time between samples in ms
11 const maxCount = '1000000';
12

(continues on next page)

4.1. BeagleBone Cookbook 181

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

13 // Set the eEQP maximum count
14 fs.writeFileSync(COUNTERPATH+'/ceiling', maxCount);
15

16 // Enable
17 fs.writeFileSync(COUNTERPATH+'/enable', '1');
18

19 setInterval(readEncoder, ms); // Check state every ms
20

21 var olddata = -1;
22 function readEncoder() {
23 var data = parseInt(fs.readFileSync(COUNTERPATH+'/count'));
24 if(data != olddata) {
25 // Print only if data changes
26 console.log('data = ' + data);
27 olddata = data;
28 }
29 }
30

31 // Black OR Pocket
32 // eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
33 // eQEP1: P9.33 and P9.35
34 // eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
35

36 // AI
37 // eQEP1: P8.33 and P8.35
38 // eQEP2: P8.11 and P8.12 or P9.19 and P9.41
39 // eQEP3: P8.24 abd P8.25 or P9.27 and P9.42

rotaryEncoder.js

Try rotating the encoder clockwise and counter-clockwise. You’ll see an output like this:

The values you get for data will depend on which way you are turning the device and how quickly. You
will need to press ^C (Ctrl-C) to end.

See Also You can also measure rotation by using a variable resistor (see Wiring a 10k variable resistor
(trimpot) to an ADC port).

Acquiring Data by Using a Smart Sensor over a Serial Connection

Problem You want to connect a smart sensor that uses a built-in microcontroller to stream data, such
as a global positioning system (GPS), to the Bone and read the data from it.

Solution The Bone has several serial ports (UARTs) that you can use to read data from an external
microcontroller included in smart sensors, such as a GPS. Just wire one up, and you’ll soon be gathering
useful data, such as your own location.

Here’s what you’ll need:

• Breadboard and jumper wires.

• GPS receiver

Wire your GPS, as shown in Wiring a GPS to UART 4.

The GPS will produce raw National Marine Electronics Association (NMEA) data that’s easy for a com-
puter to read, but not for a human. There are many utilities to help convert such sensor data into a
human-readable form. For this GPS, run the following command to load a NMEA parser:

182 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.19: Wiring a GPS to UART 4

bone$ npm install -g nmea

Running the code in Talking to a GPS with UART 4 (GPS.js) will print the current location every time the
GPS outputs it.

Listing 4.10: Talking to a GPS with UART 4 (GPS.js)
1 #!/usr/bin/env node
2 // Install with: npm install nmea
3

4 // Need to add exports.serialParsers = m.module.parsers;
5 // to the end of /usr/local/lib/node_modules/bonescript/serial.js
6

7 var b = require('bonescript');
8 var nmea = require('nmea');
9

10 var port = '/dev/ttyO4';
11 var options = {
12 baudrate: 9600,
13 parser: b.serialParsers.readline("\n")
14 };
15

16 b.serialOpen(port, options, onSerial);
17

18 function onSerial(x) {
19 if (x.err) {
20 console.log('***ERROR*** ' + JSON.stringify(x));
21 }
22 if (x.event == 'open') {
23 console.log('***OPENED***');
24 }

(continues on next page)

4.1. BeagleBone Cookbook 183

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

25 if (x.event == 'data') {
26 console.log(String(x.data));
27 console.log(nmea.parse(x.data));
28 }
29 }

GPS.js

If you don’t need the NMEA formatting, you can skip the npm part and remove the lines in the code that
refer to it.

Note: If you get an error like this TypeError: Cannot call method ‘readline’ of undefined

add this line to the end of file /usr/local/lib/node_modules/bonescript/serial.js:

exports.serialParsers = m.module.parsers;

Fig. 4.20: Table of UART outputs

Measuring a Temperature

Problem You want to measure a temperature using a digital temperature sensor.

Solution The TMP101 sensor is a common digital temperature sensor that uses a standard I2C-based
serial protocol.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Two 4.7 k resistors.

184 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

• TMP101 temperature sensor.

Wire the TMP101, as shown in Wiring an I2C TMP101 temperature sensor.

Fig. 4.21: Wiring an I2C TMP101 temperature sensor

There are two I2C buses brought out to the headers. Table of I2C outputs shows that you have wired your
device to I2C bus 2.

Once the I2C device is wired up, you can use a couple handy I2C tools to test the device. Because these
are Linux command-line tools, you have to use 2 as the bus number. i2cdetect, shown in I2C tools, shows
which I2C devices are on the bus. The -r flag indicates which bus to use. Our TMP101 is appearing
at address 0x498. You can use the i2cget command to read the value. It returns the temperature in
hexidecimal and degrees C. In this example, 0x18 = 24{deg}C, which is 75.2{deg}F. (Hmmm, the office
is a bit warm today.) Try warming up the TMP101 with your finger and running i2cget again.

I2C tools

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

bone$ i2cget -y 2 0x49
0x18

4.1. BeagleBone Cookbook 185

BeagleBoard Docs, Release 0.0.9

Fig. 4.22: Table of I2C outputs

186 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Reading the temperature via the kernel driver

The cleanest way to read the temperature from at TMP101 sensor is to use the kernel drive.

Assuming the TMP101 is on bus 2 (the last digit is the bus number)

I2C TMP101 via Kernel

bone$ cd /sys/class/i2c-adapter/
bone$ ls
i2c-0 i2c-1 i2c-2 # Three i2c busses (bus 0 is internal)
bone$ cd i2c-2 # Pick bus 2
bone$ ls -ls
0 --w--w---- 1 root gpio 4096 Jul 1 09:24 delete_device
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 device -> ../../4819c000.i2c
0 drwxrwxr-x 3 root gpio 0 Dec 31 1999 i2c-dev
0 -r--r--r-- 1 root gpio 4096 Dec 31 1999 name
0 --w--w---- 1 root gpio 4096 Jul 1 09:24 new_device
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 of_node -> ../../../../../../../../
→˓firmware/devicetree/base/ocp/interconnect@48000000/segment@100000/target-
→˓module@9c000/i2c@0
0 drwxrwxr-x 2 root gpio 0 Dec 31 1999 power
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 subsystem -> ../../../../../../../../bus/
→˓i2c
0 -rw-rw-r-- 1 root gpio 4096 Dec 31 1999 uevent

Assuming the TMP101 is at address 0x48:

bone$ echo tmp101 0x49 > new_device

This tells the kernel you have a TMP101 sensor at address 0x49. Check the log to be sure.

bone$ dmesg -H | tail -3
[+13.571823] i2c i2c-2: new_device: Instantiated device tmp101 at 0x49
[+0.043362] lm75 2-0049: supply vs not found, using dummy regulator
[+0.009976] lm75 2-0049: hwmon0: sensor 'tmp101'

Yes, it’s there, now see what happened.

bone$ ls
2-0049 delete_device device i2c-dev name
new_device of_node power subsystem uevent

Notice a new directory has appeared. It’s for i2c bus 2, address 0x49. Look into it.

bone$ cd 2-0048/hwmon/hwmon0
bone$ ls -F
device@ name power/ subsystem@ temp1_input temp1_max
temp1_max_hyst uevent update_interval
bone$ cat temp1_input
24250

There is the temperature in milli-degrees C.

Other i2c devices are supported by the kernel. You can try the Linux Kernel Driver Database, https:
//cateee.net/lkddb/ to see them.

Once the driver is in place, you can read it via code. Reading an I2C device (i2cTemp.py) shows how to
read the TMP101 from BoneScript.

4.1. BeagleBone Cookbook 187

https://cateee.net/lkddb/
https://cateee.net/lkddb/

BeagleBoard Docs, Release 0.0.9

Listing 4.11: Reading an I2C device (i2cTemp.py)
1 #!/usr/bin/env python
2 # //
3 # // i2cTemp.py
4 # // Read a TMP101 sensor on i2c bus 2, address 0x49
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/new_device
7 # // See:
8 # //
9 import time

10

11 ms = 1000 # Read time in ms
12 bus = '2'
13 addr = '49'
14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-00'+addr+'/hwmon/hwmon0';
15

16 f = open(I2CPATH+"/temp1_input", "r")
17

18 while True:
19 f.seek(0)
20 data = f.read()[:-1] # returns mili-degrees C
21 print("data (C) = " + str(int(data)/1000))
22 time.sleep(ms/1000)

i2cTemp.py

Listing 4.12: Reading an I2C device (i2cTemp.js)
1 #!/usr/bin/env node
2 //
3 // i2cTemp.js
4 // Read at TMP101 sensor on i2c bus 2, address 0x49
5 // Wiring: Attach to i2c as shown in text.
6 // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/new_device
7 // See:
8 //
9 const fs = require("fs");

10

11 const ms = 1000; // Read time in ms
12 const bus = '2';
13 const addr = '49';
14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-00'+addr+'/hwmon/hwmon0';
15

16 // Read every ms
17 setInterval(readTMP, ms);
18

19 function readTMP() {
20 var data = fs.readFileSync(I2CPATH+"/temp1_input").slice(0, -1);
21 console.log('data (C) = ' + data/1000);
22 }

i2cTemp.js

Run the code by using the following command:

bone$./i2cTemp.js
data (C) = 25.625

(continues on next page)

188 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

data (C) = 27.312
data (C) = 28.187
data (C) = 28.375
^C

Notice using the kernel interface gets you more digits of accuracy.

Reading i2c device directly

The TMP102 sensor can be read directly with i2c commands rather than using the kernel driver. First
you need to install the i2c module.

bone$ pip install smbus

Listing 4.13: Reading an I2C device (i2cTemp.py)
1 #!/usr/bin/env python
2 # //
3 # // i2ctmp101.py
4 # // Read at TMP101 sensor on i2c bus 2, address 0x49
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: pip install smbus
7 # // See:
8 # //
9 import smbus

10 import time
11

12 ms = 1000 # Read time in ms
13 bus = smbus.SMBus(2) # Using i2c bus 2
14 addr = 0x49 # TMP101 is at address 0x49
15

16 while True:
17 data = bus.read_byte_data(addr, 0)
18 print("temp (C) = " + str(data))
19 time.sleep(ms/1000)

i2ctmp101.py

This gets only 8 bits for the temperature. See the TMP101 datasheet for details on how to get up to 12
bits.

Reading Temperature via a Dallas 1-Wire Device

Problem You want to measure a temperature using a Dallas Semiconductor DS18B20 temperature
sensor.

Solution The DS18B20 is an interesting temperature sensor that uses Dallas Semiconductor’s 1-wire
interface. The data communication requires only one wire! (However, you still need wires from ground
and 3.3 V.) You can wire it to any GPIO port.

To make this recipe, you will need:

• Breadboard and jumper wires.

• 4.7 k resistor

• DS18B20 1-wire temperature sensor.

4.1. BeagleBone Cookbook 189

BeagleBoard Docs, Release 0.0.9

Wire up as shown in Wiring a Dallas 1-Wire temperature sensor.

Fig. 4.23: Wiring a Dallas 1-Wire temperature sensor

Note: This solution, written by Elias Bakken (@AgentBrum), originally appeared on`Hipstercircuits
<http://bit.ly/1FaRbbK>`_.

Edit the file /boot/uEnt.txt. Go to about line 19 and edit as shown:

17 ###
18 ###Additional custom capes
19 uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
20 #uboot_overlay_addr5=<file5>.dtbo

Be sure to remove the # at the beginning of the line.

Reboot the bone:

bone$ reboot

Now run the following command to discover the serial number on your device:

bone$ ls /sys/bus/w1/devices/
28-00000114ef1b 28-00000128197d w1_bus_master1

I have two devices wired in parallel on the same P9_12 input. This shows the serial numbers for all the
devices.

Finally, add the code in Reading a temperature with a DS18B20 (w1.js) in to a file named w1.py, edit the
path assigned to w1 so that the path points to your device, and then run it.

Listing 4.14: Reading a temperature with a DS18B20 (w1.py)
1 #!/usr/bin/env python
2 # //

(continues on next page)

190 Chapter 4. Books

http://bit.ly/1FaRbbK

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

3 # // w1.js
4 # // Read a Dallas 1-wire device on P9_12
5 # // Wiring: Attach gnd and 3.3V and data to P9_12
6 # // Setup: Edit /boot/uEnv.txt to include:
7 # // uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
8 # // See:
9 # //

10 import time
11

12 ms = 500 # Read time in ms
13 # Do ls /sys/bus/w1/devices and find the address of your device
14 addr = '28-00000d459c2c' # Must be changed for your device.
15 W1PATH ='/sys/bus/w1/devices/' + addr
16

17 f = open(W1PATH+'/temperature')
18

19 while True:
20 f.seek(0)
21 data = f.read()[:-1]
22 print("temp (C) = " + str(int(data)/1000))
23 time.sleep(ms/1000)

w1.py

Listing 4.15: Reading a temperature with a DS18B20 (w1.js)
1 #!/usr/bin/env node
2 //
3 // w1.js
4 // Read a Dallas 1-wire device on P9_12
5 // Wiring: Attach gnd and 3.3V and data to P9_12
6 // Setup: Edit /boot/uEnv.txt to include:
7 // uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
8 // See:
9 //

10 const fs = require("fs");
11

12 const ms = 500 // Read time in ms
13 // Do ls /sys/bus/w1/devices and find the address of your device
14 const addr = '28-00000d459c2c'; // Must be changed for your device.
15 const W1PATH ='/sys/bus/w1/devices/' + addr;
16

17 // Read every ms
18 setInterval(readW1, ms);
19

20 function readW1() {
21 var data = fs.readFileSync(W1PATH+'/temperature').slice(0, -1);
22 console.log('temp (C) = ' + data/1000);
23 }

w1.js

bone$./w1.js
temp (C) = 28.625
temp (C) = 29.625
temp (C) = 30.5
temp (C) = 31.0

(continues on next page)

4.1. BeagleBone Cookbook 191

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

^C

Each temperature sensor has a unique serial number, so you can have several all sharing the same data
line.

Playing and Recording Audio

Problem BeagleBone doesn’t have audio built in, but you want to play and record files.

Solution One approach is to buy an audio cape, but another, possibly cheaper approach is to buy a USB
audio adapter, such as the one shown in A USB audio dongle.

Fig. 4.24: A USB audio dongle

Drivers for the Advanced Linux Sound Architecture (ALSA) are already installed on the Bone. You can
list the recording and playing devices on your Bone by using aplay and arecord, as shown in Listing the
ALSA audio output and input devices on the Bone. BeagleBone Black has audio-out on the HDMI interface.
It’s listed as card 0 in Listing the ALSA audio output and input devices on the Bone. card 1 is my USB audio
adapter’s audio out.

Listing the ALSA audio output and input devices on the Bone

bone$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Black [TI BeagleBone Black], device 0: HDMI nxp-hdmi-hifi-0 []

Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

bone$ arecord -l
(continues on next page)

192 Chapter 4. Books

http://bit.ly/1MrAJUR

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

**** List of CAPTURE Hardware Devices ****
card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]

Subdevices: 1/1
Subdevice #0: subdevice #0

In the aplay output shown in Listing the ALSA audio output and input devices on the Bone, you can see the
USB adapter’s audio out. By default, the Bone will send audio to the HDMI. You can change that default
by creating a file in your home directory called ~/.asoundrc and adding the code in Change the default
audio out by putting this in ~/.asoundrc (audio.asoundrc) to it.

Listing 4.16: Change the default audio out by putting this in
~/.asoundrc (audio.asoundrc)

1 pcm.!default {
2 type plug
3 slave {
4 pcm "hw:1,0"
5 }
6 }
7 ctl.!default {
8 type hw
9 card 1

10 }

audio.asoundrc

You can easily play .wav files with aplay:

bone$ aplay test.wav

You can play other files in other formats by installing mplayer:

bone$ sudo apt update
bone$ sudo apt install mplayer
bone$ mplayer test.mp3

Discussion Adding the simple USB audio adapter opens up a world of audio I/O on the Bone.

4.1.3 Displays and Other Outputs

In this chapter, you will learn how to control physical hardware via BeagleBone Black’s general-purpose
input/output (GPIO) pins. The Bone has 65 GPIO pins that are brought out on two 46-pin headers,
called P8 and P9, as shown in The P8 and P9 GPIO headers.

Note: All the examples in the book assume you have cloned the Cookbook repository on
www.github.com. Go here Cloning the Cookbook Repository for instructions.

The purpose of this chapter is to give simple examples that show how to use various methods of output.
Most solutions require a breadboard and some jumper wires.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and
run it, either within Visual Studio Code (VSC) integrated development environment (IDE) or from the
command line (Getting to the Command Shell via SSH).

4.1. BeagleBone Cookbook 193

BeagleBoard Docs, Release 0.0.9

Fig. 4.25: The P8 and P9 GPIO headers

Toggling an Onboard LED

Problem You want to know how to flash the four LEDs that are next to the Ethernet port on the Bone.

Solution Locate the four onboard LEDs shown in The four USER LEDs. They are labeled USR0 through
USR3, but we’ll refer to them as the USER LEDs.

Place the code shown in Using an internal LED (internLED.js) in a file called internLED.js. You can do
this using VSC to edit files (as shown in Editing Code Using Visual Studio Code) or with a more traditional
editor (as shown in Editing a Text File from the GNU/Linux Command Shell).

Listing 4.17: Using an internal LED (internLED.py)
1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # internalLED.py
4 # Blinks A USR LED.
5 # Wiring:
6 # Setup:
7 # See:
8 # //////////////////////////////////////
9 import time

10

11 ms = 250 # Blink time in ms
12 LED = 'usr0'; # LED to blink
13 LEDPATH = '/sys/class/leds/beaglebone:green:'+LED+'/brightness'
14

15 state = '1' # Initial state
16

17 f = open(LEDPATH, "w")
18

(continues on next page)

194 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.26: The four USER LEDs

(continued from previous page)

19 while True:
20 f.seek(0)
21 f.write(state)
22 if (state == '1'):
23 state = '0'
24 else:
25 state = '1'
26 time.sleep(ms/1000)

internLED.py

Listing 4.18: Using an internal LED (internLED.js)
1 #!/usr/bin/env node
2 // //////////////////////////////////////
3 // internalLED.js
4 // Blinks the USR LEDs.
5 // Wiring:
6 // Setup:
7 // See:
8 // //////////////////////////////////////
9 const fs = require('fs');

10 const ms = 250; // Blink time in ms
11 const LED = 'usr0'; // LED to blink
12 const LEDPATH = '/sys/class/leds/beaglebone:green:'+LED+'/brightness';
13

14 var state = '1'; // Initial state
15

16 setInterval(flash, ms); // Change state every ms
17

18 function flash() {
19 fs.writeFileSync(LEDPATH, state)
20 if(state === '1') {
21 state = '0';
22 } else {

(continues on next page)

4.1. BeagleBone Cookbook 195

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

23 state = '1';
24 }
25 }

internLED.js

In the bash command window, enter the following commands:

bone$ cd ~/BoneCookbook/docs/03displays/code
bone$./internLED.js

The USER0 LED should now be flashing.

Toggling an External LED

Problem You want to connect your own external LED to the Bone.

Solution Connect an LED to one of the GPIO pins using a series resistor to limit the current. To make
this recipe, you will need:

• Breadboard and jumper wires.

• 220R to 470R resistor.

• LED

Warning: The value of the current limiting resistor depends on the LED you are using. The Bone
can drive only 4 to 6 mA, so you might need a larger resistor to keep from pulling too much current.
A 330R or 470R resistor might be better.

Diagram for using an external LED shows how you can wire the LED to pin 14 of the P9 header (P9_14).
Every circuit in this book (Wiring a Breadboard) assumes you have already wired the rightmost bus to
ground (P9_1) and the next bus to the left to the 3.3 V (P9_3) pins on the header. Be sure to get the
polarity right on the LED. The _short_ lead always goes to ground.

After you’ve wired it, start VSC (see Editing Code Using Visual Studio Code) and find the code shown in
Code for using an external LED (externLED.py).

Listing 4.19: Code for using an external LED (externLED.py)
1 #!/usr/bin/env python
2 # //
3 # // externalLED.py
4 # // Blinks an external LED wired to P9_14.
5 # // Wiring: P9_14 connects to the plus lead of an LED. The negative lead of␣

→˓the
6 # LED goes to a 220 Ohm resistor. The other lead of the␣

→˓resistor goes
7 # to ground.
8 # // Setup:
9 # // See:

10 # //
11 import time
12 import os
13

14 ms = 250 # Time to blink in ms
(continues on next page)

196 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.27: Diagram for using an external LED

(continued from previous page)

15 # Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1, line 18 maps to 50
16 pin = '50'
17

18 GPIOPATH='/sys/class/gpio/'
19 # Make sure pin is exported
20 if (not os.path.exists(GPIOPATH+"gpio"+pin)):
21 f = open(GPIOPATH+"export", "w")
22 f.write(pin)
23 f.close()
24

25 # Make it an output pin
26 f = open(GPIOPATH+"gpio"+pin+"/direction", "w")
27 f.write("out")
28 f.close()
29

30 f = open(GPIOPATH+"gpio"+pin+"/value", "w")
31 # Blink
32 while True:
33 f.seek(0)
34 f.write("1")
35 time.sleep(ms/1000)
36

37 f.seek(0)
38 f.write("0")
39 time.sleep(ms/1000)
40 f.close()

externLED.py

4.1. BeagleBone Cookbook 197

BeagleBoard Docs, Release 0.0.9

Listing 4.20: Code for using an external LED (externLED.js)
1 #!/usr/bin/env node
2 //
3 // externalLED.js
4 // Blinks the P9_14 pin
5 // Wiring:
6 // Setup:
7 // See:
8 //
9 const fs = require("fs");

10

11 // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1, line 18 maps to 50
12 pin="50";
13

14 GPIOPATH="/sys/class/gpio/";
15 // Make sure pin is exported
16 if(!fs.existsSync(GPIOPATH+"gpio"+pin)) {
17 fs.writeFileSync(GPIOPATH+"export", pin);
18 }
19 // Make it an output pin
20 fs.writeFileSync(GPIOPATH+"gpio"+pin+"/direction", "out");
21

22 // Blink every 500ms
23 setInterval(toggle, 500);
24

25 state="1";
26 function toggle() {
27 fs.writeFileSync(GPIOPATH+"gpio"+pin+"/value", state);
28 if(state == "0") {
29 state = "1";
30 } else {
31 state = "0";
32 }
33 }

externLED.js

Save your file and run the code as before (Toggling an Onboard LED).

Toggling a High-Voltage External Device

Problem You want to control a device that runs at 120 V.

Solution Working with 120 V can be tricky –even dangerous– if you aren’t careful. Here’s a safe way
to do it.

To make this recipe, you will need:

• PowerSwitch Tail II

Diagram for wiring PowerSwitch Tail II shows how you can wire the PowerSwitch Tail II to pin P9_14.

After you’ve wired it, because this uses the same output pin as Toggling an External LED, you can run the
same code (Code for using an external LED (externLED.py)).

198 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.28: Diagram for wiring PowerSwitch Tail II

Fading an External LED

Problem You want to change the brightness of an LED from the Bone.

Solution Use the Bone’s pulse width modulation (PWM) hardware to fade an LED. We’ll use the same
circuit as before (Diagram for using an external LED). Find the code in Code for using an external LED
(fadeLED.py) Next configure the pins. We are using P9_14 so run:

bone$ config-pin P9_14 pwm

Then run it as before.

Listing 4.21: Code for using an external LED (fadeLED.py)
1 #!/usr/bin/env python
2 # //
3 # // fadeLED.py
4 # // Blinks the P9_14 pin
5 # // Wiring:
6 # // Setup: config-pin P9_14 pwm
7 # // See:
8 # //
9 import time

10 ms = 20; # Fade time in ms
11

12 pwmPeriod = 1000000 # Period in ns
13 pwm = '1' # pwm to use
14 channel = 'a' # channel to use
15 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
16 step = 0.02 # Step size
17 min = 0.02 # dimmest value
18 max = 1 # brightest value
19 brightness = min # Current brightness
20

21 f = open(PWMPATH+'/period', 'w')
(continues on next page)

4.1. BeagleBone Cookbook 199

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

22 f.write(str(pwmPeriod))
23 f.close()
24

25 f = open(PWMPATH+'/enable', 'w')
26 f.write('1')
27 f.close()
28

29 f = open(PWMPATH+'/duty_cycle', 'w')
30 while True:
31 f.seek(0)
32 f.write(str(round(pwmPeriod*brightness)))
33 brightness += step
34 if(brightness >= max or brightness <= min):
35 step = -1 * step
36 time.sleep(ms/1000)
37

38 # | Pin | pwm | channel
39 # | P9_31 | 0 | a
40 # | P9_29 | 0 | b
41 # | P9_14 | 1 | a
42 # | P9_16 | 1 | b
43 # | P8_19 | 2 | a
44 # | P8_13 | 2 | b

fadeLED.py

Listing 4.22: Code for using an external LED (fadeLED.js)
1 #!/usr/bin/env node
2 //
3 // fadeLED.js
4 // Blinks the P9_14 pin
5 // Wiring:
6 // Setup: config-pin P9_14 pwm
7 // See:
8 //
9 const fs = require("fs");

10 const ms = '20'; // Fade time in ms
11

12 const pwmPeriod = '1000000'; // Period in ns
13 const pwm = '1'; // pwm to use
14 const channel = 'a'; // channel to use
15 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
16 var step = 0.02; // Step size
17 const min = 0.02, // dimmest value
18 max = 1; // brightest value
19 var brightness = min; // Current brightness;
20

21

22 // Set the period in ns
23 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
24 fs.writeFileSync(PWMPATH+'/duty_cycle', pwmPeriod/2);
25 fs.writeFileSync(PWMPATH+'/enable', '1');
26

27 setInterval(fade, ms); // Step every ms
28

29 function fade() {
(continues on next page)

200 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

30 fs.writeFileSync(PWMPATH+'/duty_cycle',
31 parseInt(pwmPeriod*brightness));
32 brightness += step;
33 if(brightness >= max || brightness <= min) {
34 step = -1 * step;
35 }
36 }
37

38 // | Pin | pwm | channel
39 // | P9_31 | 0 | a
40 // | P9_29 | 0 | b
41 // | P9_14 | 1 | a
42 // | P9_16 | 1 | b
43 // | P8_19 | 2 | a
44 // | P8_13 | 2 | b

fadeLED.js

The Bone has several outputs that can be use as pwm’s as shown in Table of PWM outputs. There are
three EHRPWM’s which each has a pair of pwm channels. Each pair must have the same period.

Fig. 4.29: Table of PWM outputs

The pwm’s are accessed through /dev/bone/pwm

bone$ cd /dev/bone/pwm
bone$ ls
0 1 2

Here we see six pwmchips that can be used, each has two channels. Explore one.

bone$ cd 1
bone$ ls

(continues on next page)

4.1. BeagleBone Cookbook 201

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

a b
bone$ cd a
bone$ ls
capture duty_cycle enable period polarity power uevent

Here is where you can set the period and duty_cycle (in ns) and enable the pwm.
Attach in LED to P9_14 and if you set the period long enough you can see the LED␣
→˓flash.

bone$ echo 1000000000 > period
bone$ echo 500000000 > duty_cycle
bone$ echo 1 > enable

Your LED should now be flashing.

Headers to pwm channel mapping are the mapping I’ve figured out so far. I don’t know how to get to the
timers.

Table 4.3: Headers to pwm channel mapping
Pin pwm channel
P9_31 0 a
P9_29 0 b
P9_14 1 a
P9_16 1 b
P8_19 2 a
P8_13 2 b

Writing to an LED Matrix

Problem You have an I2C-based LED matrix to interface.

Solution There are a number of nice LED matrices that allow you to control several LEDs via one
interface. This solution uses an Adafruit Bicolor 8x8 LED Square Pixel Matrix w/|I2C| Backpack.

To make this recipe, you will need:

• Breadboard and jumper wires

• Two 4.7 R resistors.

• I2C LED matrix

The LED matrix is a 5 V device, but you can drive it from 3.3 V. Wire, as shown in Wiring an I2C LED
matrix.

Measuring a Temperature shows how to use i2cdetect to discover the address of an I2C device.

Run the i2cdetect -y -r 2 command to discover the address of the display on I2C bus 2, as shown in Using
I2C command-line tools to discover the address of the display.

Using I2C command-line tools to discover the address of the display

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

(continues on next page)

202 Chapter 4. Books

http://www.adafruit.com/products/902

BeagleBoard Docs, Release 0.0.9

Fig. 4.30: Wiring an I2C LED matrix

(continued from previous page)

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: 70 -- -- -- -- -- -- --

Here, you can see a device at 0x49 and 0x70. I know I have a temperature sensor at 0x49, so the LED
matrix must be at 0.70.

Find the code in LED matrix display (matrixLEDi2c.py) and run it by using the following command:

bone$ pip install smbus # (Do this only once.)
bone$./matrixLEDi2c.py

LED matrix display (matrixLEDi2c.py)

include::code/matrixLEDi2c.py

1. This line states which bus to use. The last digit gives the BoneScript bus number.

2. This specifies the address of the LED matrix, 0x70 in our case.

3. This indicates which LEDs to turn on. The first byte is for the first column of green LEDs. In this
case, all are turned off. The next byte is for the first column of red LEDs. The hex 0x3c number is
0b00111100 in binary. This means the first two red LEDs are off, the next four are on, and the last
two are off. The next byte (0x00) says the second column of green LEDs are all off, the fourth byte
(0x42 = 0b01000010) says just two red LEDs are on, and so on. Declarations define four different
patterns to display on the LED matrix, the last being all turned off.

4. Send three commands to the matrix to get it ready to display.

4.1. BeagleBone Cookbook 203

BeagleBoard Docs, Release 0.0.9

5. Now, we are ready to display the various patterns. After each pattern is displayed, we sleep a
certain amount of time so that the pattern can be seen.

6. Finally, send commands to the LED matrix to set the brightness. This makes the disply fade out and
back in again.

Driving a 5 V Device

Problem You have a 5 V device to drive, and the Bone has 3.3 V outputs.

Solution If you are lucky, you might be able to drive a 5 V device from the Bone’s 3.3 V output. Try it
and see if it works. If not, you need a level translator.

What you will need for this recipe:

• A PCA9306 level translator

• A 5 V power supply (if the Bone’s 5 V power supply isn’t enough)

The PCA9306 translates signals at 3.3 V to 5 V in both directions. It’s meant to work with I2C devices
that have a pull-up resistor, but it can work with anything needing translation.

Wiring a PCA9306 level translator to an LED matrix shows how to wire a PCA9306 to an LED matrix. The
left is the 3.3 V side and the right is the 5 V side. Notice that we are using the Bone’s built-in 5 V power
supply.

Fig. 4.31: Wiring a PCA9306 level translator to an LED matrix

Note: If your device needs more current than the Bone’s 5 V power supply provides, you can wire in an
external power supply.

204 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Writing to a NeoPixel LED String Using the PRUs

Problem You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light
it up.

Solution The PRU Cookbook has a nice discussion (WS2812 (NeoPixel) driver) on driving NeoPixels.

Fig. 4.32: Wiring an Adafruit NeoPixel LED matrix to P9_29

Writing to a NeoPixel LED String Using LEDscape

Making Your Bone Speak

Problem Your Bone wants to talk.

Solution Just install the flite text-to-speech program:

bone$ sudo apt install flite

Then add the code from A program that talks (speak.js) in a file called speak.js and run.

Listing 4.23: A program that talks (speak.js)
1 #!/usr/bin/env node
2

3 var exec = require('child_process').exec;
4

5 function speakForSelf(phrase) {
6 {
7 exec('flite -t "' + phrase + '"', function (error, stdout, stderr) {
8 console.log(stdout);

(continues on next page)

4.1. BeagleBone Cookbook 205

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487
https://markayoder.github.io/PRUCookbook/05blocks/blocks.html#blocks_ws2812

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

9 if(error) {
10 console.log('error: ' + error);
11 }
12 if(stderr) {
13 console.log('stderr: ' + stderr);
14 }
15 });
16 }
17

18 speakForSelf("Hello, My name is Borris. " +
19 "I am a BeagleBone Black, " +
20 "a true open hardware, " +
21 "community-supported embedded computer for developers and hobbyists. " +
22 "I am powered by a 1 Giga Hertz Sitara™ ARM® Cortex-A8 processor. " +
23 "I boot Linux in under 10 seconds. " +
24 "You can get started on development in " +
25 "less than 5 minutes with just a single USB cable." +
26 "Bark, bark!"
27);

speak.js

See Playing and Recording Audio to see how to use a USB audio dongle and set your default audio out.

4.1.4 Motors

One of the many fun things about embedded computers is that you can move physical things with motors.
But there are so many different kinds of motors (servo, stepper, DC), so how do you select the right
one?

The type of motor you use depends on the type of motion you want:

• R/C or hobby servo motor
Can be quickly positioned at various absolute angles, but some don’t spin. In fact, many can
turn only about 180{deg}.

– Stepper motor
Spins and can also rotate in precise relative angles, such as turning 45{deg}. Stepper
motors come in two types: bipolar (which has four wires) and unipolar (which has
five or six wires).

– DC motor
Spins either clockwise or counter-clockwise and can have the greatest speed of the
three. But a DC motor can’t easily be made to turn to a given angle.

When you know which type of motor to use, interfacing is easy. This chapter shows how to interface
with each of these motors.

Note: Motors come in many sizes and types. This chapter presents some of the more popular types and
shows how they can interface easily to the Bone. If you need to turn on and off a 120 V motor, consider
using something like the PowerSwitch presented in Toggling a High-Voltage External Device.

Note: The Bone has built-in 3.3 V and 5 V supplies, which can supply enough current to drive some
small motors. Many motors, however, draw enough current that an external power supply is needed.
Therefore, an external 5 V power supply is listed as optional in many of the recipes.

206 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Note: All the examples in the book assume you have cloned the Cookbook repository on
www.github.com. Go here Cloning the Cookbook Repository for instructions.

Controlling a Servo Motor

Problem You want to use BeagleBone to control the absolute position of a servo motor.

Solution We’ll use the pulse width modulation (PWM) hardware of the Bone to control a servo motor.

To make the recipe, you will need:

• Servo motor.

• Breadboard and jumper wires.

• 1 kΩ resistor (optional)

• 5 V power supply (optional)

The 1 kΩ resistor isn’t required, but it provides some protection to the general-purpose in-
put/output (GPIO) pin in case the servo fails and draws a large current.

Wire up your servo, as shown in Driving a servo motor with the 3.3 V power supply.

Note: There is no standard for how servo motor wires are colored. One of my servos is wired like
Driving a servo motor with the 3.3 V power supply red is 3.3 V, black is ground, and yellow is the control
line. I have another servo that has red as 3.3 V and ground is brown, with the control line being orange.
Generally, though, the 3.3 V is in the middle. Check the datasheet for your servo before wiring.

Fig. 4.33: Driving a servo motor with the 3.3 V power supply

The code for controlling the servo motor is in servoMotor.py, shown in Code for driving a servo motor
(servoMotor.py). You need to configure the pin for PWM.

4.1. BeagleBone Cookbook 207

BeagleBoard Docs, Release 0.0.9

bone$ cd ~/BoneCookbook/docs/04motors/code
bone$ config-pin P9_16 pwm
bone$./servoMotor.py

Listing 4.24: Code for driving a servo motor (servoMotor.py)
1 #!/usr/bin/env python
2 # //
3 # // servoMotor.py
4 # // Drive a simple servo motor back and forth on P9_16 pin
5 # // Wiring:
6 # // Setup: config-pin P9_16 pwm
7 # // See:
8 # //
9 import time

10 import signal
11 import sys
12

13 pwmPeriod = '20000000' # Period in ns, (20 ms)
14 pwm = '1' # pwm to use
15 channel = 'b' # channel to use
16 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
17 low = 0.8 # Smallest angle (in ms)
18 hi = 2.4 # Largest angle (in ms)
19 ms = 250 # How often to change position, in ms
20 pos = 1.5 # Current position, about middle ms)
21 step = 0.1 # Step size to next position
22

23 def signal_handler(sig, frame):
24 print('Got SIGINT, turning motor off')
25 f = open(PWMPATH+'/enable', 'w')
26 f.write('0')
27 f.close()
28 sys.exit(0)
29 signal.signal(signal.SIGINT, signal_handler)
30 print('Hit ^C to stop')
31

32 f = open(PWMPATH+'/period', 'w')
33 f.write(pwmPeriod)
34 f.close()
35 f = open(PWMPATH+'/enable', 'w')
36 f.write('1')
37 f.close()
38

39 f = open(PWMPATH+'/duty_cycle', 'w')
40 while True:
41 pos += step # Take a step
42 if(pos > hi or pos < low):
43 step *= -1
44 duty_cycle = str(round(pos*1000000)) # Convert ms to ns
45 # print('pos = ' + str(pos) + ' duty_cycle = ' + duty_cycle)
46 f.seek(0)
47 f.write(duty_cycle)
48 time.sleep(ms/1000)
49

50 # | Pin | pwm | channel
51 # | P9_31 | 0 | a

(continues on next page)

208 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

52 # | P9_29 | 0 | b
53 # | P9_14 | 1 | a
54 # | P9_16 | 1 | b
55 # | P8_19 | 2 | a
56 # | P8_13 | 2 | b

servoMotor.py

Listing 4.25: Code for driving a servo motor (servoMotor.js)
1 #!/usr/bin/env node
2 //
3 // servoMotor.js
4 // Drive a simple servo motor back and forth on P9_16 pin
5 // Wiring:
6 // Setup: config-pin P9_16 pwm
7 // See:
8 //
9 const fs = require("fs");

10

11 const pwmPeriod = '20000000'; // Period in ns, (20 ms)
12 const pwm = '1'; // pwm to use
13 const channel = 'b'; // channel to use
14 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
15 const low = 0.8, // Smallest angle (in ms)
16 hi = 2.4, // Largest angle (in ms)
17 ms = 250; // How often to change position, in ms
18 var pos = 1.5, // Current position, about middle ms)
19 step = 0.1; // Step size to next position
20

21 console.log('Hit ^C to stop');
22 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
23 fs.writeFileSync(PWMPATH+'/enable', '1');
24

25 var timer = setInterval(sweep, ms);
26

27 // Sweep from low to hi position and back again
28 function sweep() {
29 pos += step; // Take a step
30 if(pos > hi || pos < low) {
31 step *= -1;
32 }
33 var dutyCycle = parseInt(pos*1000000); // Convert ms to ns
34 // console.log('pos = ' + pos + ' duty cycle = ' + dutyCycle);
35 fs.writeFileSync(PWMPATH+'/duty_cycle', dutyCycle);
36 }
37

38 process.on('SIGINT', function() {
39 console.log('Got SIGINT, turning motor off');
40 clearInterval(timer); // Stop the timer
41 fs.writeFileSync(PWMPATH+'/enable', '0');
42 });
43

44 // | Pin | pwm | channel
45 // | P9_31 | 0 | a
46 // | P9_29 | 0 | b
47 // | P9_14 | 1 | a

(continues on next page)

4.1. BeagleBone Cookbook 209

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

48 // | P9_16 | 1 | b
49 // | P8_19 | 2 | a
50 // | P8_13 | 2 | b

servoMotor.js

Running the code causes the motor to move back and forth, progressing to successive positions between
the two extremes. You will need to press ^C (Ctrl-C) to stop the script.

Controlling a Servo with an Rotary Encoder

Problem You have a rotary encoder from Reading a rotary encoder (rotaryEncoder.js) that you want to
control a servo motor.

Solution Combine the code from Reading a rotary encoder (rotaryEncoder.js) and Controlling a Servo
Motor.

bone$ config-pin P9_16 pwm
bone$ config-pin P8_11 eqep
bone$ config-pin P8_12 eqep
bone$./servoEncoder.py

Listing 4.26: Code for driving a servo motor with a rotary en-
corder(servoEncoder.py)

1 #!/usr/bin/env python
2 # //
3 # // servoEncoder.py
4 # // Drive a simple servo motor using rotary encoder viq eQEP
5 # // Wiring: Servo on P9_16, rotary encoder on P8_11 and P8_12
6 # // Setup: config-pin P9_16 pwm
7 # // config-pin P8_11 eqep
8 # // config-pin P8_12 eqep
9 # // See:

10 # //
11 import time
12 import signal
13 import sys
14

15 # Set up encoder
16 eQEP = '2'
17 COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
18 maxCount = '180'
19

20 ms = 100 # Time between samples in ms
21

22 # Set the eEQP maximum count
23 fQEP = open(COUNTERPATH+'/ceiling', 'w')
24 fQEP.write(maxCount)
25 fQEP.close()
26

27 # Enable
28 fQEP = open(COUNTERPATH+'/enable', 'w')
29 fQEP.write('1')
30 fQEP.close()

(continues on next page)

210 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

31

32 fQEP = open(COUNTERPATH+'/count', 'r')
33

34 # Set up servo
35 pwmPeriod = '20000000' # Period in ns, (20 ms)
36 pwm = '1' # pwm to use
37 channel = 'b' # channel to use
38 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
39 low = 0.6 # Smallest angle (in ms)
40 hi = 2.5 # Largest angle (in ms)
41 ms = 250 # How often to change position, in ms
42 pos = 1.5 # Current position, about middle ms)
43 step = 0.1 # Step size to next position
44

45 def signal_handler(sig, frame):
46 print('Got SIGINT, turning motor off')
47 f = open(PWMPATH+'/enable', 'w')
48 f.write('0')
49 f.close()
50 sys.exit(0)
51 signal.signal(signal.SIGINT, signal_handler)
52

53 f = open(PWMPATH+'/period', 'w')
54 f.write(pwmPeriod)
55 f.close()
56 f = open(PWMPATH+'/duty_cycle', 'w')
57 f.write(str(round(int(pwmPeriod)/2)))
58 f.close()
59 f = open(PWMPATH+'/enable', 'w')
60 f.write('1')
61 f.close()
62

63 print('Hit ^C to stop')
64

65 olddata = -1
66 while True:
67 fQEP.seek(0)
68 data = fQEP.read()[:-1]
69 # Print only if data changes
70 if data != olddata:
71 olddata = data
72 # print("data = " + data)
73 # # map 0-180 to low-hi
74 duty_cycle = -1*int(data)*(hi-low)/180.0 + hi
75 duty_cycle = str(int(duty_cycle*1000000)) # Convert from ms to␣

→˓ns
76 # print('duty_cycle = ' + duty_cycle)
77 f = open(PWMPATH+'/duty_cycle', 'w')
78 f.write(duty_cycle)
79 f.close()
80 time.sleep(ms/1000)
81

82 # Black OR Pocket
83 # eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
84 # eQEP1: P9.33 and P9.35
85 # eQEP2: P8.11 and P8.12 OR P2_24 and P2_33

(continues on next page)

4.1. BeagleBone Cookbook 211

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

86

87 # AI
88 # eQEP1: P8.33 and P8.35
89 # eQEP2: P8.11 and P8.12 or P9.19 and P9.41
90 # eQEP3: P8.24 abd P8.25 or P9.27 and P9.42
91

92 # | Pin | pwm | channel
93 # | P9_31 | 0 | a
94 # | P9_29 | 0 | b
95 # | P9_14 | 1 | a
96 # | P9_16 | 1 | b
97 # | P8_19 | 2 | a
98 # | P8_13 | 2 | b

servoEncoder.py

Controlling the Speed of a DC Motor

Problem You have a DC motor (or a solenoid) and want a simple way to control its speed, but not the
direction.

Solution It would be nice if you could just wire the DC motor to BeagleBone Black and have it work,
but it won’t. Most motors require more current than the GPIO ports on the Bone can supply. Our solution
is to use a transistor to control the current to the bone.

Here we configure the encoder to returns value between 0 and 180 inclusive. This value is then mapped
to a value between min (0.6 ma) and max (2.5 ms). This number is converted from milliseconds and
nanoseconds (time 1000000) and sent to the servo motor via the pwm.

Here’s what you will need:

• 3 V to 5 V DC motor

• Breadboard and jumper wires.

• 1 kΩ resistor.

• Transistor 2N3904.

• Diode 1N4001.

• Power supply for the motor (optional)

If you are using a larger motor (more current), you will need to use a larger transistor.

Wire your breadboard as shown in Wiring a DC motor to spin one direction.

Use the code in Driving a DC motor in one direction (dcMotor.js) (dcMotor.js) to run the motor.

Listing 4.27: Driving a DC motor in one direction (dcMotor.py)
1 #!/usr/bin/env python
2 # //
3 # // dcMotor.js
4 # // This is an example of driving a DC motor
5 # // Wiring:
6 # // Setup: config-pin P9_16 pwm
7 # // See:
8 # //
9 import time

10 import signal
(continues on next page)

212 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.34: Wiring a DC motor to spin one direction

(continued from previous page)

11 import sys
12

13 def signal_handler(sig, frame):
14 print('Got SIGINT, turning motor off')
15 f = open(PWMPATH+'/enable', 'w')
16 f.write('0')
17 f.close()
18 sys.exit(0)
19 signal.signal(signal.SIGINT, signal_handler)
20

21 pwmPeriod = '1000000' # Period in ns
22 pwm = '1' # pwm to use
23 channel = 'b' # channel to use
24 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
25

26 low = 0.05 # Slowest speed (duty cycle)
27 hi = 1 # Fastest (always on)
28 ms = 100 # How often to change speed, in ms
29 speed = 0.5 # Current speed
30 step = 0.05 # Change in speed
31

32 f = open(PWMPATH+'/duty_cycle', 'w')
33 f.write('0')
34 f.close()
35 f = open(PWMPATH+'/period', 'w')
36 f.write(pwmPeriod)
37 f.close()
38 f = open(PWMPATH+'/enable', 'w')
39 f.write('1')
40 f.close()

(continues on next page)

4.1. BeagleBone Cookbook 213

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

41

42 f = open(PWMPATH+'/duty_cycle', 'w')
43 while True:
44 speed += step
45 if(speed > hi or speed < low):
46 step *= -1
47 duty_cycle = str(round(speed*1000000)) # Convert ms to ns
48 f.seek(0)
49 f.write(duty_cycle)
50 time.sleep(ms/1000)

dcMotor.py

Listing 4.28: Driving a DC motor in one direction (dcMotor.js)
1 #!/usr/bin/env node
2 //
3 // dcMotor.js
4 // This is an example of driving a DC motor
5 // Wiring:
6 // Setup: config-pin P9_16 pwm
7 // See:
8 //
9 const fs = require("fs");

10

11 const pwmPeriod = '1000000'; // Period in ns
12 const pwm = '1'; // pwm to use
13 const channel = 'b'; // channel to use
14 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
15

16 const low = 0.05, // Slowest speed (duty cycle)
17 hi = 1, // Fastest (always on)
18 ms = 100; // How often to change speed, in ms
19 var speed = 0.5, // Current speed;
20 step = 0.05; // Change in speed
21

22 // fs.writeFileSync(PWMPATH+'/export', pwm); // Export the pwm channel
23 // Set the period in ns, first 0 duty_cycle,
24 fs.writeFileSync(PWMPATH+'/duty_cycle', '0');
25 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
26 fs.writeFileSync(PWMPATH+'/duty_cycle', pwmPeriod/2);
27 fs.writeFileSync(PWMPATH+'/enable', '1');
28

29 timer = setInterval(sweep, ms);
30

31 function sweep() {
32 speed += step;
33 if(speed > hi || speed < low) {
34 step *= -1;
35 }
36 fs.writeFileSync(PWMPATH+'/duty_cycle', parseInt(pwmPeriod*speed));
37 // console.log('speed = ' + speed);
38 }
39

40 process.on('SIGINT', function() {
41 console.log('Got SIGINT, turning motor off');
42 clearInterval(timer); // Stop the timer

(continues on next page)

214 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

43 fs.writeFileSync(PWMPATH+'/enable', '0');
44 });

dcMotor.js

See Also

How do you change the direction of the motor? See Controlling the Speed and Direction of a DC Motor.

Controlling the Speed and Direction of a DC Motor

Problem You would like your DC motor to go forward and backward.

Solution Use an H-bridge to switch the terminals on the motor so that it will run both backward and
forward. We’ll use the L293D a common, single-chip H-bridge.

Here’s what you will need:

• 3 V to 5 V motor.

• Breadboard and jumper wires.

• L293D H-Bridge IC.

• Power supply for the motor (optional)

Lay out your breadboard as shown in Driving a DC motor with an H-bridge. Ensure that the L293D is
positioned correctly. There is a notch on one end that should be pointed up.

Fig. 4.35: Driving a DC motor with an H-bridge

The code in Code for driving a DC motor with an H-bridge (h-bridgeMotor.js) (h-bridgeMotor.js) looks
much like the code for driving the DC motor with a transistor (Driving a DC motor in one direction
(dcMotor.js)). The additional code specifies which direction to spin the motor.

4.1. BeagleBone Cookbook 215

BeagleBoard Docs, Release 0.0.9

Listing 4.29: Code for driving a DC motor with an H-bridge (h-
bridgeMotor.js)

1 #!/usr/bin/env node
2

3 // This example uses an H-bridge to drive a DC motor in two directions
4

5 var b = require('bonescript');
6

7 var enable = 'P9_21'; // Pin to use for PWM speed control
8 in1 = 'P9_15',
9 in2 = 'P9_16',

10 step = 0.05, // Change in speed
11 min = 0.05, // Min duty cycle
12 max = 1.0, // Max duty cycle
13 ms = 100, // Update time, in ms
14 speed = min; // Current speed;
15

16 b.pinMode(enable, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);
17 b.pinMode(in1, b.OUTPUT);
18 b.pinMode(in2, b.OUTPUT);
19

20 function doInterval(x) {
21 if(x.err) {
22 console.log('x.err = ' + x.err);
23 return;
24 }
25 timer = setInterval(sweep, ms);
26 }
27

28 clockwise(); // Start by going clockwise
29

30 function sweep() {
31 speed += step;
32 if(speed > max || speed < min) {
33 step *= -1;
34 step>0 ? clockwise() : counterClockwise();
35 }
36 b.analogWrite(enable, speed);
37 console.log('speed = ' + speed);
38 }
39

40 function clockwise() {
41 b.digitalWrite(in1, b.HIGH);
42 b.digitalWrite(in2, b.LOW);
43 }
44

45 function counterClockwise() {
46 b.digitalWrite(in1, b.LOW);
47 b.digitalWrite(in2, b.HIGH);
48 }
49

50 process.on('SIGINT', function() {
51 console.log('Got SIGINT, turning motor off');
52 clearInterval(timer); // Stop the timer
53 b.analogWrite(enable, 0); // Turn motor off
54 });

216 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

h-bridgeMotor.js

Driving a Bipolar Stepper Motor

Problem You want to drive a stepper motor that has four wires.

Solution Use an L293D H-bridge. The bipolar stepper motor requires us to reverse the coils, so we
need to use an H-bridge.

Here’s what you will need:

• Breadboard and jumper wires.

• 3 V to 5 V bipolar stepper motor.

• L293D H-Bridge IC.

Wire as shown in Bipolar stepper motor wiring.

Fig. 4.36: Bipolar stepper motor wiring

Use the code in Driving a bipolar stepper motor (bipolarStepperMotor.py) to drive the motor.

Listing 4.30: Driving a bipolar stepper motor (bipolarStepperMo-
tor.py)

1 #!/usr/bin/env python
2 import time
3 import os
4 import signal
5 import sys
6

7 # Motor is attached here
8 # controller = ["P9_11", "P9_13", "P9_15", "P9_17"];
9 # controller = ["30", "31", "48", "5"]

10 # controller = ["P9_14", "P9_16", "P9_18", "P9_22"];
11 controller = ["50", "51", "4", "2"]
12 states = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]]
13 statesHiTorque = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]]

(continues on next page)

4.1. BeagleBone Cookbook 217

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

14 statesHalfStep = [[1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0],
15 [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1]]
16

17 curState = 0 # Current state
18 ms = 100 # Time between steps, in ms
19 maxStep = 22 # Number of steps to turn before turning around
20 minStep = 0 # minimum step to turn back around on
21

22 CW = 1 # Clockwise
23 CCW = -1
24 pos = 0 # current position and direction
25 direction = CW
26 GPIOPATH="/sys/class/gpio"
27

28 def signal_handler(sig, frame):
29 print('Got SIGINT, turning motor off')
30 for i in range(len(controller)) :
31 f = open(GPIOPATH+"/gpio"+controller[i]+"/value", "w")
32 f.write('0')
33 f.close()
34 sys.exit(0)
35 signal.signal(signal.SIGINT, signal_handler)
36 print('Hit ^C to stop')
37

38 def move():
39 global pos
40 global direction
41 global minStep
42 global maxStep
43 pos += direction
44 print("pos: " + str(pos))
45 # Switch directions if at end.
46 if (pos >= maxStep or pos <= minStep) :
47 direction *= -1
48 rotate(direction)
49

50 # This is the general rotate
51 def rotate(direction) :
52 global curState
53 global states
54 # print("rotate(%d)", direction);
55 # Rotate the state acording to the direction of rotation
56 curState += direction
57 if(curState >= len(states)) :
58 curState = 0;
59 elif(curState<0) :
60 curState = len(states)-1
61 updateState(states[curState])
62

63 # Write the current input state to the controller
64 def updateState(state) :
65 global controller
66 print(state)
67 for i in range(len(controller)) :
68 f = open(GPIOPATH+"/gpio"+controller[i]+"/value", "w")
69 f.write(str(state[i]))

(continues on next page)

218 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

70 f.close()
71

72 # Initialize motor control pins to be OUTPUTs
73 for i in range(len(controller)) :
74 # Make sure pin is exported
75 if (not os.path.exists(GPIOPATH+"/gpio"+controller[i])):
76 f = open(GPIOPATH+"/export", "w")
77 f.write(pin)
78 f.close()
79 # Make it an output pin
80 f = open(GPIOPATH+"/gpio"+controller[i]+"/direction", "w")
81 f.write("out")
82 f.close()
83

84 # Put the motor into a known state
85 updateState(states[0])
86 rotate(direction)
87

88 # Rotate
89 while True:
90 move()
91 time.sleep(ms/1000)

bipolarStepperMotor.py

When you run the code, the stepper motor will rotate back and forth.

Driving a Unipolar Stepper Motor

Problem You want to drive a stepper motor that has five or six wires.

Solution If your stepper motor has five or six wires, it’s a unipolar stepper and is wired differently
than the bipolar. Here, we’ll use a ULN2003 Darlington Transistor Array IC to drive the motor.

Here’s what you will need:

• Breadboard and jumper wires.

• 3 V to 5 V unipolar stepper motor.

• ULN2003 Darlington Transistor Array IC.

Wire, as shown in Unipolar stepper motor wiring.

Note: The IC in Unipolar stepper motor wiring is illustrated upside down from the way it is usually
displayed.

That is, the notch for pin 1 is on the bottom. This made drawing the diagram much cleaner.

Also, notice the banded wire running the P9_7 (5 V) to the UL2003A. The stepper motor I’m using runs
better at 5 V, so I’m using the Bone’s 5 V power supply. The signal coming from the GPIO pins is 3.3 V,
but the U2003A will step them up to 5 V to drive the motor.

The code for driving the motor is in unipolarStepperMotor.js however, it is almost identical to the
bipolar stepper code (Driving a bipolar stepper motor (bipolarStepperMotor.py)), so Changes to bipolar
code to drive a unipolar stepper motor (unipolarStepperMotor.js.diff) shows only the lines that you need to
change.

4.1. BeagleBone Cookbook 219

BeagleBoard Docs, Release 0.0.9

Fig. 4.37: Unipolar stepper motor wiring

Listing 4.31: Changes to bipolar code to drive a unipolar stepper
motor (unipolarStepperMotor.py.diff)

1 # controller = ["P9_11", "P9_13", "P9_15", "P9_17"]
2 controller = ["30", "31", "48", "5"]
3 states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]]
4 curState = 0 // Current state
5 ms = 100 // Time between steps, in ms
6 max = 200 // Number of steps to turn before turning around

unipolarStepperMotor.py.diff

Listing 4.32: Changes to bipolar code to drive a unipolar stepper
motor (unipolarStepperMotor.js.diff)

1 # var controller = ["P9_11", "P9_13", "P9_15", "P9_17"];
2 controller = ["30", "31", "48", "5"]
3 var states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]];
4 var curState = 0; // Current state
5 var ms = 100, // Time between steps, in ms
6 max = 200, // Number of steps to turn before turning around

unipolarStepperMotor.js.diff

The code in this example makes the following changes:

• The states are different. Here, we have two pins high at a time.

• The time between steps (ms) is shorter, and the number of steps per

direction (max) is bigger. The unipolar stepper I’m using has many more steps per rotation, so I need
more steps to make it go around.

4.1.5 Beyond the Basics

In Basics, you learned how to set up BeagleBone Black, and Sensors, Displays and Other Outputs, and
Motors showed how to interface to the physical world. The remainder of the book moves into some more

220 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

exciting advanced topics, and this chapter gets you ready for them.

The recipes in this chapter assume that you are running Linux on your host computer (Selecting an OS
for Your Development Host Computer) and are comfortable with using Linux. We continue to assume that
you are logged in as debian on your Bone.

Running Your Bone Standalone

Problem You want to use BeagleBone Black as a desktop computer with keyboard, mouse, and an
HDMI display.

Solution The Bone comes with USB and a microHDMI output. All you need to do is connect your
keyboard, mouse, and HDMI display to it.

To make this recipe, you will need:

• Standard HDMI cable and female HDMI-to-male microHDMI adapter, or

• MicroHDMI-to-HDMI adapter cable

• HDMI monitor

• USB keyboard and mouse

• Powered USB hub

Note: The microHDMI adapter is nice because it allows you to use a regular HDMI cable with the Bone.
However, it will block other ports and can damage the Bone if you aren’t careful. The microHDMI-to-
HDMI cable won’t have these problems.

Tip: You can also use an HDMI-to-DVI cable and use your Bone with a DVI-D display.

The adapter looks something like Female HDMI-to-male microHDMI adapter.

Plug the small end into the microHDMI input on the Bone and plug your HDMI cable into the other end
of the adapter and your monitor. If nothing displays on your Bone, reboot.

If nothing appears after the reboot, edit the /boot/uEnv.txt file. Search for the line containing
disable_uboot_overlay_video=1 and make sure it’s commented out:

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
#disable_uboot_overlay_video=1

Then reboot.

The /boot/uEnv.txt file contains a number of configuration commands that are executed at boot time.
The # character is used to add comments; that is, everything to the right of a +# is ignored by the
Bone and is assumed to be for humans to read. In the previous example, ###Disable auto loading is a
comment that informs us the next line(s) are for disabling things. Two disable_uboot_overlay commands
follow. Both should be commented-out and won’t be executed by the Bon

Why not just remove the line? Later, you might decide you need more general-purpose in-
put/output (GPIO) pins and don’t need the HDMI display. If so, just remove the # from the
disable_uboot_overlay_video=1 command. If you had completely removed the line earlier, you would
have to look up the details somewhere to re-create it.

When in doubt, comment-out don’t delete.

4.1. BeagleBone Cookbook 221

BeagleBoard Docs, Release 0.0.9

Fig. 4.38: Female HDMI-to-male microHDMI adapter

222 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Note: If you want to re-enable the HDMI audio, just comment-out the line you added.

The Bone has only one USB port, so you will need to get either a keyboard with a USB hub or a USB hub.
Plug the USB hub into the Bone and then plug your keyboard and mouse in to the hub. You now have a
Beagle workstation no host computer is needed.

Tip: A powered hub is recommended because USB can supply only 500 mA, and you’ll want to plug
many things into the Bone.

This recipe disables the HDMI audio, which allows the Bone to try other resolutions. If this fails, see
BeagleBoneBlack HDMI for how to force the Bone’s resolution to match your monitor.

Selecting an OS for Your Development Host Computer

Problem Your project needs a host computer, and you need to select an operating system (OS) for it.

Solution For projects that require a host computer, we assume that you are running Linux Ubuntu
20.04 LTS. You can be running either a native installation, through Windows Subsystem for Linux, via a
virtual machine such as VirtualBox, or in the cloud (Microsoft Azure or Amazon Elastic Compute Cloud,
EC2, for example).

Recently I’ve been prefering Windows Subsystem for Linux.

Getting to the Command Shell via SSH

Problem You want to connect to the command shell of a remote Bone from your host pass:[computer].

Solution Running Python and JavaScript Applications from Visual Studio Code shows how to run shell
commands in the Visual Studio Code bash tab. However, the Bone has Secure Shell (SSH) enabled right
out of the box, so you can easily connect by using the following command to log in as user debian, (note
the $ at the end of the prompt):

host$ ssh debian@192.168.7.2
Warning: Permanently added 'bone,192.168.7.2' (ECDSA) to the list of known hosts.
Last login: Mon Dec 22 07:53:06 2014 from yoder-linux.local
bone$

debian has the default password tempped It’s best to change the password:

bone$ passwd
Changing password for debian.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

4.1. BeagleBone Cookbook 223

http://bit.ly/1GEPcOH
http://bit.ly/1wXOwkw
http://bit.ly/1wXOwkw
https://docs.microsoft.com/en-us/windows/wsl/
https://www.virtualbox.org/
https://portal.azure.com/
http://aws.amazon.com/ec2/
https://docs.microsoft.com/en-us/windows/wsl/

BeagleBoard Docs, Release 0.0.9

Getting to the Command Shell via the Virtual Serial Port

Problem You want to connect to the command shell of a remote Bone from your host computer without
using SSH.

Solution Sometimes, you can’t connect to the Bone via SSH, but you have a network working over USB
to the Bone. There is a way to access the command line to fix things without requiring extra hardware.
(Viewing and Debugging the Kernel and u-boot Messages at Boot Time shows a way that works even if you
don’t have a network working over USB, but it requires a special serial-to-USB cable.)

First, check to ensure that the serial port is there. On the host computer, run the following command:

host$ ls -ls /dev/ttyACM0
0 crw-rw---- 1 root dialout 166, 0 Jun 19 11:47 /dev/ttyACM0

/dev/ttyACM0 is a serial port on your host computer that the Bone creates when it boots up. The letters
crw-rw—- show that you can’t access it as a normal user. However, you can access it if you are part of
dialout group. See if you are in the dialout group:

host$ groups
yoder adm tty uucp dialout cdrom sudo dip plugdev lpadmin sambashare

Looks like I’m already in the group, but if you aren’t, just add yourself to the group:

host$ sudo adduser $USER dialout

You have to run adduser only once. Your host computer will remember the next time you boot up. Now,
install and run the screen command:

host$ sudo apt install screen
host$ screen /dev/ttyACM0 115200
Debian GNU/Linux 7 beaglebone ttyGS0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

The /dev/ttyACM0 parameter specifies which serial port to connect to, and 115200 tells the speed of the
connection. In this case, it’s 115,200 bits per second.

Viewing and Debugging the Kernel and u-boot Messages at Boot Time

Problem You want to see the messages that are logged by BeagleBone Black as it comes to life.

Solution There is no network in place when the Bone first boots up, so Getting to the Command Shell
via SSH and Getting to the Command Shell via the Virtual Serial Port won’t work. This recipe uses some
extra hardware (FTDI cable) to attach to the Bone’s console serial port.

To make this recipe, you will need:

• 3.3 V FTDI cable

Warning: Be sure to get a 3.3 V FTDI cable (shown in FTDI cable), because the 5 V cables won’t
work.

224 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Tip: The Bone’s Serial Debug J1 connector has Pin 1 connected to ground, Pin 4 to receive, and Pin 5
to transmit. The other pins are not attached.

Fig. 4.39: FTDI cable

Look for a small triangle at the end of the FTDI cable (FTDI connector). It’s often connected to the black
wire.

Next, look for the FTDI pins of the Bone (labeled J1 on the Bone), shown in FTDI pins for the FTDI
connector. They are next to the P9 header and begin near pin 20. There is a white dot near P9_20.

Plug the FTDI connector into the FTDI pins, being sure to connect the triangle pin on the connector to
the white dot pin of the FTDI connector.

Now, run the following commands on your host computer:

host$ ls -ls /dev/ttyUSB0
0 crw-rw---- 1 root dialout 188, 0 Jun 19 12:43 /dev/ttyUSB0
host$ sudo adduser $USER dialout
host$ screen /dev/ttyUSB0 115200
Debian GNU/Linux 7 beaglebone ttyO0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

4.1. BeagleBone Cookbook 225

BeagleBoard Docs, Release 0.0.9

Fig. 4.40: FTDI connector

Fig. 4.41: FTDI pins for the FTDI connector

226 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Note: Your screen might initially be blank. Press Enter a couple times to see the login prompt.

Verifying You Have the Latest Version of the OS on Your Bone from the Shell

Problem You are logged in to your Bone with a command prompt and want to know what version of
the OS you are running.

Solution Log in to your Bone and enter the following command:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bullseye IoT Image 2022-07-01

Verifying You Have the Latest Version of the OS on Your Bone shows how to open the ID.txt file to see
the OS version. The /etc/dogtag file has the same contents and is easier to find if you already have a
command prompt. See Running the Latest Version of the OS on Your Bone if you need to update your OS.

Controlling the Bone Remotely with a VNC

Problem You want to access the BeagleBone’s graphical desktop from your host computer.

Solution Run the installed Virtual Network Computing (VNC) server:

bone$ tightvncserver

You will require a password to access your desktops.

Password:
Verify:
Would you like to enter a view-only password (y/n)? n
xauth: (argv):1: bad display name "beaglebone:1" in "add" command

New 'X' desktop is beaglebone:1

reating default startup script /home/debian/.vnc/xstartup
Starting applications specified in /home/debian/.vnc/xstartup
Log file is /home/debian/.vnc/beagleboard:1.log

To connect to the Bone, you will need to run a VNC client. There are many to choose from. Remmina
Remote Desktop Client is already installed on Ubuntu. Start and select the new remote desktop file
button (Creating a new remote desktop file in Remmina Remote Desktop Client).

Give your connection a name, being sure to select “Remmina VNC Plugin” Also, be sure to add :1 after
the server address, as shown in Configuring the Remmina Remote Desktop Client. This should match the
:1 that was displayed when you started vncserver.

Click Connect to start graphical access to your Bone, as shown in The Remmina Remote Desktop Client
showing the BeagleBone desktop.

Tip: You might need to resize the VNC screen on your host to see the bottom menu bar on your Bone.

Note: You need to have X Windows installed and running for the VNC to work. Here’s how to install it.
This needs some 250M of disk space and 19 minutes to install.

4.1. BeagleBone Cookbook 227

BeagleBoard Docs, Release 0.0.9

Fig. 4.42: Creating a new remote desktop file in Remmina Remote Desktop Client

Fig. 4.43: Configuring the Remmina Remote Desktop Client

228 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.44: The Remmina Remote Desktop Client showing the BeagleBone desktop

4.1. BeagleBone Cookbook 229

BeagleBoard Docs, Release 0.0.9

bone$ bone$ sudo apt install bbb.io-xfce4-desktop
bone$ cp /etc/bbb.io/templates/fbdev.xorg.conf /etc/X11/xorg.conf
bone$ startxfce4
/usr/bin/startxfce4: Starting X server
/usr/bin/startxfce4: 122: exec: xinit: not found

Learning Typical GNU/Linux Commands

Problem There are many powerful commands to use in Linux. How do you learn about them?

Solution Common Linux commands lists many common Linux commands.

Table 4.4: Common Linux commands
Command Action
pwd show current directory
cd change current directory
ls list directory contents
chmod change file permissions
chown change file ownership
cp copy files
mv move files
rm remove files
mkdir make directory
rmdir remove directory
cat dump file contents
less progressively dump file
vi edit file (complex)
nano edit file (simple)
head trim dump to top
tail trim dump to bottom
echo print/dump value
env dump environment variables
export set environment variable
history dump command history
grep search dump for strings
man get help on command
apropos show list of man pages
find search for files
tar create/extract file archives
gzip compress a file
gunzip decompress a file
du show disk usage
df show disk free space
mount mount disks
tee write dump to file in parallel
hexdump readable binary dumps
whereis locates binary and source files

Editing a Text File from the GNU/Linux Command Shell

Problem You want to run an editor to change a file.

230 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Solution The Bone comes with a number of editors. The simplest to learn is nano. Just enter the
following command:

bone$ nano file

You are now in nano (Editing a file with nano). You can’t move around the screen using the mouse, so
use the arrow keys. The bottom two lines of the screen list some useful commands. Pressing ˄G
(Ctrl-G) will display more useful commands. ˄X (Ctrl-X) exits nano and gives you the option of
saving the file.

Fig. 4.45: Editing a file with nano

Tip: By default, the file you create will be saved in the directory from which you opened nano.

Many other text editors will run on the Bone. vi, vim, emacs, and even eclipse are all supported. See
Installing Additional Packages from the Debian Package Feed to learn if your favorite is one of them.

Establishing an Ethernet-Based Internet Connection

Problem You want to connect your Bone to the Internet using the wired network connection.

Solution Plug one end of an Ethernet patch cable into the RJ45 connector on the Bone (see The RJ45
port on the Bone) and the other end into your home hub/router. The yellow and green link lights on both
ends should begin to flash.

If your router is already configured to run DHCP (Dynamical Host Configuration Protocol), it will auto-
matically assign an IP address to the Bone.

Warning: It might take a minute or two for your router to detect the Bone and assign the IP address.

4.1. BeagleBone Cookbook 231

BeagleBoard Docs, Release 0.0.9

Fig. 4.46: The RJ45 port on the Bone

To find the IP address, open a terminal window and run the ip command:

bone$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default␣
→˓qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default␣
→˓qlen 1000

link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
inet 10.0.5.144/24 brd 10.0.5.255 scope global dynamic eth0

valid_lft 80818sec preferred_lft 80818sec
inet6 fe80::caa0:30ff:fea6:26e8/64 scope link

valid_lft forever preferred_lft forever
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group␣
→˓default qlen 1000

link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0

valid_lft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link

valid_lft forever preferred_lft forever
4: usb1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group␣
→˓default qlen 1000

link/ether 76:7e:49:46:1b:78 brd ff:ff:ff:ff:ff:ff
inet 192.168.6.2/24 brd 192.168.6.255 scope global usb1

valid_lft forever preferred_lft forever
inet6 fe80::747e:49ff:fe46:1b78/64 scope link

valid_lft forever preferred_lft forever
5: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

link/can
6: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10

link/can

My Bone is connected to the Internet in two ways: via the RJ45 connection (eth0) and via the USB cable

232 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(usb0). The inet field shows that my Internet address is 10.0.5.144 for the RJ45 connector.

On my university campus, you must register your MAC address before any device will work on the
network. The HWaddr field gives the MAC address. For eth0, it’s c8:a0:30:a6:26:e8.

The IP address of your Bone can change. If it’s been assigned by DHCP, it can change at any time. The
MAC address, however, never changes; it is assigned to your ethernet device when it’s manufactured.

Warning: When a Bone is connected to some networks it becomes visible to the world. If you don’t
secure your Bone, the world will soon find it. See debian has the default password tempped It’s best to
change the password: and Setting Up a Firewall

On many home networks, you will be behind a firewall and won’t be as visible.

Establishing a WiFi-Based Internet Connection

Problem You want BeagleBone Black to talk to the Internet using a USB wireless adapter.

Solution
Tip: For the correct instructions for the image you are using, go to latest-images and click on the image
you are using.

I’m running Debian 11.x (Bullseye), the middle one.

Fig. 4.47: Latested Beagle Images

4.1. BeagleBone Cookbook 233

http://forum.beagleboard.org/tag/latest-images

BeagleBoard Docs, Release 0.0.9

Scroll to the top of the page and you’ll see instructions on setting up Wifi. The instructions here are
based on using +networkctl+

Fig. 4.48: Instructions for setting up your network.

Several WiFi adapters work with the Bone. Check WiFi Adapters for the latest list.

To make this recipe, you will need:

• USB Wifi adapter

• 5 V external power supply

Warning: Most adapters need at least 1 A of current to run, and USB supplies only 0.5 A, so be
sure to use an external power supply. Otherwise, you will experience erratic behavior and random
crashes.

First, plug in the WiFi adapter and the 5 V external power supply and reboot.

Then run lsusb to ensure that your Bone found the adapter:

bone$ lsusb
Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS 802.11n
WLAN Adapter
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Note: There is a well-known bug in the Bone’s 3.8 kernel series that prevents USB devices from being

234 Chapter 4. Books

http://bit.ly/1EbEwUo

BeagleBoard Docs, Release 0.0.9

discovered when hot-plugged, which is why you should reboot. Newer kernels should address this issue.

Next, run networkctl to find your adapter’s name. Mine is called wlan0, but you might see other names,
such as ra0.

bone$ networkctl
IDX LINK TYPE OPERATIONAL SETUP
1 lo loopback carrier unmanaged
2 eth0 ether no-carrier configuring
3 usb0 gadget routable configured
4 usb1 gadget routable configured
5 can0 can off unmanaged
6 can1 can off unmanaged
7 wlan0 wlan routable configured
8 SoftAp0 wlan routable configured

8 links listed.

If no name appears, try ip a:

bone$ ip a
...
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN␣
→˓group default qlen 1000

link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group␣
→˓default qlen 1000

link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0

valid_lft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link

valid_lft forever preferred_lft forever
...
7: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default␣
→˓qlen 1000

link/ether 64:69:4e:7e:5c:e4 brd ff:ff:ff:ff:ff:ff
inet 10.0.7.21/24 brd 10.0.7.255 scope global dynamic wlan0

valid_lft 85166sec preferred_lft 85166sec
inet6 fe80::6669:4eff:fe7e:5ce4/64 scope link

valid_lft forever preferred_lft forever

Next edit the configuration file */etc/wpa_supplicant/wpa_supplicant-wlan0.conf*.

bone$ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

In the file you’ll see:

ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev
update_config=1
#country=US

network={
ssid="Your SSID"
psk="Your Password"

}

Change the ssid and psk enteries for your network. Save your file, then run:

4.1. BeagleBone Cookbook 235

BeagleBoard Docs, Release 0.0.9

bone$ sudo systemctl restart systemd-networkd
bone$ ip a
bone$ ping -c2 google.com
PING google.com (142.250.191.206) 56(84) bytes of data.
64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_seq=1 ttl=115 time=19.
→˓5 ms
64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_seq=2 ttl=115 time=19.
→˓4 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 19.387/19.450/19.513/0.063 ms

wlan0 should now have an ip address and you should be on the network. If not, try rebooting.

Sharing the Host’s Internet Connection over USB

Problem Your host computer is connected to the Bone via the USB cable, and you want to run the
network between the two.

Solution Establishing an Ethernet-Based Internet Connection shows how to connect BeagleBone Black
to the Internet via the RJ45 Ethernet connector. This recipe shows a way to connect without using the
RJ45 connector.

A network is automatically running between the Bone and the host computer at boot time using the
USB. The host’s IP address is 192.168.7.1 and the Bone’s is 192.168.7.2. Although your Bone is talking
to your host, it can’t reach the Internet in general, nor can the Internet reach it. On one hand, this is
good, because those who are up to no good can’t access your Bone. On the other hand, your Bone can’t
reach the rest of the world.

Letting your bone see the world: setting up IP masquerading

You need to set up IP masquerading on your host and configure your Bone to use it. Here is a solution that
works with a host computer running Linux. Add the code in Code for IP Masquerading (ipMasquerade.sh)
to a file called ipMasquerade.sh on your host computer.

Listing 4.33: Code for IP Masquerading (ipMasquerade.sh)
1 #!/bin/bash
2 # These are the commands to run on the host to set up IP
3 # masquerading so the Bone can access the Internet through
4 # the USB connection.
5 # This configures the host, run ./setDNS.sh to configure the Bone.
6 # Inspired by http://thoughtshubham.blogspot.com/2010/03/
7 # internet-over-usb-otg-on-beagleboard.html
8

9 if [$# -eq 0] ; then
10 echo "Usage: $0 interface (such as eth0 or wlan0)"
11 exit 1
12 fi
13

14 interface=$1
15 hostAddr=192.168.7.1
16 beagleAddr=192.168.7.2
17 ip_forward=/proc/sys/net/ipv4/ip_forward
18

19 if [`cat $ip_forward` == 0]
(continues on next page)

236 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

20 then
21 echo "You need to set IP forwarding. Edit /etc/sysctl.conf using:"
22 echo "$ sudo nano /etc/sysctl.conf"
23 echo "and uncomment the line \"net.ipv4.ip_forward=1\""
24 echo "to enable forwarding of packets. Then run the following:"
25 echo "$ sudo sysctl -p"
26 exit 1
27 else
28 echo "IP forwarding is set on host."
29 fi
30 # Set up IP masquerading on the host so the bone can reach the outside world
31 sudo iptables -t nat -A POSTROUTING -s $beagleAddr -o $interface -j MASQUERADE

ipMasquerade.sh

Then, on your host, run the following commands:

host$ chmod +x ipMasquerade.sh
host$./ipMasquerade.sh eth0

This will direct your host to take requests from the Bone and send them to eth0. If your host is using a
wireless connection, change eth0 to wlan0.

Now let’s set up your host to instruct the Bone what to do. Add the code in Code for setting the DNS on
the Bone (setDNS.sh) to setDNS.sh on your host computer.

Listing 4.34: Code for setting the DNS on the Bone (setDNS.sh)
1 #!/bin/bash
2 # These are the commands to run on the host so the Bone
3 # can access the Internet through the USB connection.
4 # Run ./ipMasquerade.sh the first time. It will set up the host.
5 # Run this script if the host is already set up.
6 # Inspired by http://thoughtshubham.blogspot.com/2010/03/internet-over-usb-otg-on-

→˓beagleboard.html
7

8 hostAddr=192.168.7.1
9 beagleAddr=${1:-192.168.7.2}

10

11 # Save the /etc/resolv.conf on the Beagle in case we mess things up.
12 ssh root@$beagleAddr "mv -n /etc/resolv.conf /etc/resolv.conf.orig"
13 # Create our own resolv.conf
14 cat - << EOF > /tmp/resolv.conf
15 # This is installed by ./setDNS.sh on the host
16

17 EOF
18

19 TMP=/tmp/nmcli
20 # Look up the nameserver of the host and add it to our resolv.conf
21 # From: http://askubuntu.com/questions/197036/how-to-know-what-dns-am-i-using-in-

→˓ubuntu-12-04
22 # Use nmcli dev list for older version nmcli
23 # Use nmcli dev show for newer version nmcli
24 nmcli dev show > $TMP
25 if [$? -ne 0]; then # $? is the return code, if not 0 something bad happened.
26 echo "nmcli failed, trying older 'list' instead of 'show'"
27 nmcli dev list > $TMP
28 if [$? -ne 0]; then

(continues on next page)

4.1. BeagleBone Cookbook 237

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

29 echo "nmcli failed again, giving up..."
30 exit 1
31 fi
32 fi
33

34 grep IP4.DNS $TMP | sed 's/IP4.DNS\[.\]:/nameserver/' >> /tmp/resolv.conf
35

36 scp /tmp/resolv.conf root@$beagleAddr:/etc
37

38 # Tell the beagle to use the host as the gateway.
39 ssh root@$beagleAddr "/sbin/route add default gw $hostAddr" || true
40

setDNS.sh

Then, on your host, run the following commands:

host$ chmod +x setDNS.sh
host$./setDNS.sh
host$ ssh -X root@192.168.7.2
bone$ ping -c2 google.com
PING google.com (216.58.216.96) 56(84) bytes of data.
64 bytes from ord30s22....net (216.58.216.96): icmp_req=1 ttl=55 time=7.49 ms
64 bytes from ord30s22....net (216.58.216.96): icmp_req=2 ttl=55 time=7.62 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 7.496/7.559/7.623/0.107 ms

This will look up what Domain Name System (DNS) servers your host is using and copy them to the right
place on the Bone. The ping command is a quick way to verify your connection.

Letting the world see your bone: setting up port forwarding

Now your Bone can access the world via the USB port and your host computer, but what if you have a
web server on your Bone that you want to access from the world? The solution is to use port forwarding
from your host. Web servers typically listen to port 80. First, look up the IP address of your host:

host$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:e0:4e:00:22:51

inet addr:137.112.41.35 Bcast:137.112.41.255 Mask:255.255.255.0
inet6 addr: fe80::2e0:4eff:fe00:2251/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:5371019 errors:0 dropped:0 overruns:0 frame:0
TX packets:4720856 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000
RX bytes:1667916614 (1.6 GB) TX bytes:597909671 (597.9 MB)

eth1 Link encap:Ethernet HWaddr 00:1d:60:40:58:e6
...

It’s the number following inet addr:, which in my case is 137.112.41.35.

Tip: If you are on a wireless network, find the IP address associated with wlan0.

Then run the following, using your host’s IP address:

238 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

host$ sudo iptables -t nat -A PREROUTING -p tcp -s 0/0 \
-d 137.112.41.35 --dport 1080 -j DNAT --to 192.168.7.2:80

Now browse to your host computer at port 1080. That is, if your host’s IP address is 123.456.789.0,
enter 123.456.789.0:1080. The :1080 specifies what port number to use. The request will be forwarded
to the server on your Bone listening to port 80. (I used 1080 here, in case your host is running a web
server of its own on port 80.)

Setting Up a Firewall

Problem You have put your Bone on the network and want to limit which IP addresses can access it.

Solution How-To Geek has a great posting on how do use ufw, the “uncomplicated firewall”. Check
out How to Secure Your Linux Server with a UFW Firewall. I’ll summarize the initial setup here.

First install and check the status:

bone$ sudo apt install ufw
bone$ sudo ufw status
Status: inactive

Now turn off everything coming in and leave on all outgoing. Note, this won’t take effect until ufw is
enabled.

bone$ sudo ufw default deny incoming
bone$ sudo ufw default allow outgoing

Don’t enable yet, make sure ssh still has access

bone$ sudo ufw allow 22

Just to be sure, you can install nmap on your host computer to see what ports are currently open.

host$ sudo apt update
host$ sudo apt install nmap
host$ nmap 192.168.7.2
Starting Nmap 7.80 (https://nmap.org) at 2022-07-09 13:37 EDT
Nmap scan report for bone (192.168.7.2)
Host is up (0.014s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
3000/tcp open ppp

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

Currently there are three ports visible: 22, 80 and 3000 (visual studio code) Now turn on the firewal
and see what happends.

bone$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

host$ nmap 192.168.7.2
Starting Nmap 7.80 (https://nmap.org) at 2022-07-09 13:37 EDT

(continues on next page)

4.1. BeagleBone Cookbook 239

https://www.howtogeek.com/
https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

Nmap scan report for bone (192.168.7.2)
Host is up (0.014s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

Only port 22 (ssh) is accessable now.

The firewall will remain on, even after a reboot. Disable it now if you don’t want it on.

bone$ sudo ufw disable
Firewall stopped and disabled on system startup

See the How-To Geek article for more examples.

Installing Additional Packages from the Debian Package Feed

Problem You want to do more cool things with your BeagleBone by installing more programs.

Warning: Your Bone needs to be on the network for this to work. See Establishing an Ethernet-
Based Internet Connection, Establishing a WiFi-Based Internet Connection, or Sharing the Host’s Internet
Connection over USB.

Solution The easiest way to install more software is to use +apt+:

bone$ sudo apt update
bone$ sudo apt install "name of software"

A sudo is necessary since you aren’t running as root. The first command downloads package lists from
various repositories and updates them to get information on the newest versions of packages and their
dependencies. (You need to run it only once a week or so.) The second command fetches the software
and installs it and all packages it depends on.

How do you find out what software you can install? Try running this:

bone$ apt-cache pkgnames | sort > /tmp/list
bone$ wc /tmp/list

67303 67303 1348342 /tmp/list
bone$ less /tmp/list

The first command lists all the packages that apt knows about and sorts them and stores them in /tmp/
list. The second command shows why you want to put the list in a file. The wc command counts the
number of lines, words, and characters in a file. In our case, there are over 67,000 packages from which
we can choose! The less command displays the sorted list, one page at a time. Press the space bar to go
to the next page. Press Q to quit.

Suppose that you would like to install an online dictionary (dict). Just run the following command:

bone$ sudo apt install dict

Now you can run dict.

240 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Removing Packages Installed with apt

Problem You’ve been playing around and installing all sorts of things with apt and now you want to
clean things up a bit.

Solution apt has a remove option, so you can run the following command:

bone$ sudo apt remove dict
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
libmaa3 librecode0 recode
Use 'apt autoremove' to remove them.
The following packages will be REMOVED:
dict
0 upgraded, 0 newly installed, 1 to remove and 27 not upgraded.
After this operation, 164 kB disk space will be freed.
Do you want to continue [Y/n]? y

Copying Files Between the Onboard Flash and the MicroSD Card

Problem You want to move files between the onboard flash and the microSD card.

Solution If you booted from the microSD card, run the following command:

bone$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 7.2G 2.0G 4.9G 29% /
udev 10M 0 10M 0% /dev
tmpfs 100M 1.9M 98M 2% /run
/dev/mmcblk0p2 7.2G 2.0G 4.9G 29% /
tmpfs 249M 0 249M 0% /dev/shm
tmpfs 249M 0 249M 0% /sys/fs/cgroup
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 100M 0 100M 0% /run/user
bone$ ls /dev/mmcblk*
/dev/mmcblk0 /dev/mmcblk0p2 /dev/mmcblk1boot0 /dev/mmcblk1p1
/dev/mmcblk0p1 /dev/mmcblk1 /dev/mmcblk1boot1

The df command shows what partitions are already mounted. The line /dev/mmcblk0p2 7.2G 2.0G 4.9G
29% / shows that mmcblk0 partition p2 is mounted as /, the root file system. The general rule is that the
media you’re booted from (either the onboard flash or the microSD card) will appear as mmcblk0. The
second partition (p2) is the root of the file system.

The ls command shows what devices are available to mount. Because mmcblk0 is already mounted,
/dev/mmcblk1p1 must be the other media that we need to mount. Run the following commands to
mount it:

bone$ cd /mnt
bone$ sudo mkdir onboard
bone$ ls onboard
bone$ sudo mount /dev/mmcblk1p1 onboard/
bone$ ls onboard
bin etc lib mnt proc sbin sys var

(continues on next page)

4.1. BeagleBone Cookbook 241

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

boot home lost+found nfs-uEnv.txt root selinux tmp
dev ID.txt media opt run srv usr

The cd command takes us to a place in the file system where files are commonly mounted. The mkdir
command creates a new directory (onboard) to be a mount point. The ls command shows there is
nothing in onboard. The mount command makes the contents of the onboard flash accessible. The next
ls shows there now are files in onboard. These are the contents of the onboard flash, which can be copied
to and from like any other file.

This same process should also work if you have booted from the onboard flash. When you are done with
the onboard flash, you can unmount it by using this command:

bone$ sudo umount /mnt/onboard

Freeing Space on the Onboard Flash or MicroSD Card

Problem You are starting to run out of room on your microSD card (or onboard flash) and have re-
moved several packages you had previously installed (Removing Packages Installed with apt), ut you still
need to free up more space.

Solution To free up space, you can remove preinstalled packages or discover big files to remove.

Removing preinstalled packages

You might not need a few things that come preinstalled in the Debian image, including such things as
OpenCV, the Chromium web browser, and some documentation.

Note: The Chromium web browser is the open source version of Google’s Chrome web browser. Unless
you are using the Bone as a desktop computer, you can probably remove it.

Here’s how you can remove these:

bone$ sudo apt remove bb-node-red-installer (171M)
bone$ sudo apt autoremove
bone$ sudo -rf /usr/share/doc (116M)
bone$ sudo -rf /usr/share/man (19M)

Discovering big files

The du (disk usage) command offers a quick way to discover big files:

bone$ sudo du -shx /*
12M /bin
160M /boot
0 /dev
23M /etc
835M /home
4.0K /ID.txt
591M /lib
16K /lost+found
4.0K /media
8.0K /mnt
664M /opt
du: cannot access '/proc/1454/task/1454/fd/4': No such file or directory
du: cannot access '/proc/1454/task/1454/fdinfo/4': No such file or directory
du: cannot access '/proc/1454/fd/3': No such file or directory

(continues on next page)

242 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

du: cannot access '/proc/1454/fdinfo/3': No such file or directory
0 /proc
1.4M /root
1.4M /run
13M /sbin
4.0K /srv
0 /sys
48K /tmp
1.6G /usr
1.9G /var

If you booted from the microSD card, du lists the usage of the microSD. If you booted from the onboard
flash, it lists the onboard flash usage.

The -s option summarizes the results rather than displaying every file. -h prints it in _human_ form–that
is, using M and K postfixes rather than showing lots of digits. The /* specifies to run it on everything in
the top-level directory. It looks like a couple of things disappeared while the command was running and
thus produced some error messages.

Tip: For more help, try du –help.

The /var directory appears to be the biggest user of space at 1.9 GB. You can then run the following
command to see what’s taking up the space in /var:

bone$ sudo du -sh /usr/*
4.0K /var/backups
76M /var/cache
93M /var/lib
4.0K /var/local
0 /var/lock
751M /var/log
4.0K /var/mail
4.0K /var/opt
0 /var/run
16K /var/spool
987M /var/swap
28K /var/tmp
16K /var/www

A more interactive way to explore your disk usage is by installing ncdu (ncurses disk usage):

bone$ sudo apt install ncdu
bone$ ncdu /

After a moment, you’ll see the following:

ncdu 1.15.1 ~ Use the arrow keys to navigate, press ? for help
--- / --
. 1.9 GiB [##########] /var

1.5 GiB [########] /usr
835.0 MiB [####] /home
663.5 MiB [###] /opt
590.9 MiB [###] /lib
159.0 MiB [] /boot

. 22.8 MiB [] /etc
12.5 MiB [] /sbin

(continues on next page)

4.1. BeagleBone Cookbook 243

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

11.1 MiB [] /bin
. 1.4 MiB [] /run
. 40.0 KiB [] /tmp
! 16.0 KiB [] /lost+found

8.0 KiB [] /mnt
e 4.0 KiB [] /srv
! 4.0 KiB [] /root
e 4.0 KiB [] /media

4.0 KiB [] ID.txt
. 0.0 B [] /sys
. 0.0 B [] /proc

0.0 B [] /dev

Total disk usage: 5.6 GiB Apparent size: 5.5 GiB Items: 206148

ncdu is a character-based graphics interface to du. You can now use your arrow keys to navigate the file
structure to discover where the big unused files are. Press ? for help.

Warning: Be careful not to press the D key, because it’s used to delete a file or directory.

Using C to Interact with the Physical World

Problem You want to use C on the Bone to talk to the world.

Solution The C solution isn’t as simple as the JavaScript or Python solution, but it does work and is
much faster. The approach is the same, write to the /sys/class/gpio files.

Listing 4.35: Use C to blink an LED (blinkLED.c)
1 //
2 // blinkLED.c
3 // Blinks the P9_14 pin
4 // Wiring:
5 // Setup:
6 // See:
7 //
8 #include <stdio.h>
9 #include <string.h>

10 #include <unistd.h>
11 #define MAXSTR 100
12 // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1, line 18 maps to 50
13 int main() {
14 FILE *fp;
15 char pin[] = "50";
16 char GPIOPATH[] = "/sys/class/gpio";
17 char path[MAXSTR] = "";
18

19 // Make sure pin is exported
20 snprintf(path, MAXSTR, "%s%s%s", GPIOPATH, "/gpio", pin);
21 if (!access(path, F_OK) == 0) {
22 snprintf(path, MAXSTR, "%s%s", GPIOPATH, "/export");
23 fp = fopen(path, "w");
24 fprintf(fp, "%s", pin);
25 fclose(fp);

(continues on next page)

244 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

26 }
27

28 // Make it an output pin
29 snprintf(path, MAXSTR, "%s%s%s%s", GPIOPATH, "/gpio", pin, "/direction");
30 fp = fopen(path, "w");
31 fprintf(fp, "out");
32 fclose(fp);
33

34 // Blink every .25 sec
35 int state = 0;
36 snprintf(path, MAXSTR, "%s%s%s%s", GPIOPATH, "/gpio", pin, "/value");
37 fp = fopen(path, "w");
38 while (1) {
39 fseek(fp, 0, SEEK_SET);
40 if (state) {
41 fprintf(fp, "1");
42 } else {
43 fprintf(fp, "0");
44 }
45 state = ~state;
46 usleep(250000); // sleep time in microseconds
47 }
48 }

blinkLED.c

Here, as with JavaScript and Python, the gpio pins are refered to by the Linux gpio number. Mapping
from header pin to internal GPIO number shows how the P8 and P9 Headers numbers map to the gpio
number. For this example P9_14 is used, which the table shows in gpio 50.

Fig. 4.49: Mapping from header pin to internal GPIO number

Compile and run the code:

4.1. BeagleBone Cookbook 245

BeagleBoard Docs, Release 0.0.9

bone$ gcc -o blinkLED blinkLED.c
bone$./blinkLED
^C

Hit ^C to stop the blinking.

4.1.6 Internet of Things

You can easily connect BeagleBone Black to the Internet via a wire (Establishing an Ethernet-Based Internet
Connection), wirelessly (Establishing a WiFi-Based Internet Connection), or through the USB to a host and
then to the Internet (Sharing the Host’s Internet Connection over USB). Either way, it opens up a world of
possibilities for the “Internet of Things” (IoT).

Now that you’re online, this chapter offers various things to do with your connection.

Accessing Your Host Computer’s Files on the Bone

Problem You want to access a file on a Linux host computer that’s attached to the Bone.

Solution If you are running Linux on a host computer attached to BeagleBone Black, it’s not hard to
mount the Bone’s files on the host or the host’s files on the Bone by using sshfs. Suppose that you want
to access files on the host from the Bone. First, install sshfs:

bone$ sudo apt install sshfs

Now, mount the files to an empty directory (substitute your username on the host computer for username
and the IP address of the host for 192.168.7.1):

bone$ mkdir host
bone$ sshfs username@$192.168.7.1:. host
bone$ cd host
bone$ ls

The ls command will now list the files in your home directory on your host computer. You can edit them
as if they were local to the Bone. You can access all the files by substituting :/ for the :. following the IP
address.

You can go the other way, too. Suppose that you are on your Linux host computer and want to access
files on your Bone. Install sshfs:

host$ sudo apt install sshfs

and then access:

host$ mkdir /mnt/bone
host$ sshfs debian@$192.168.7.2:/ /mnt/bone
host$ cd /mnt/bone
host$ ls

Here, we are accessing the files on the Bone as debian. We’ve mounted the entire file system, starting
with /, so you can access any file. Of course, with great power comes great responsibility, so be careful.

The sshfs command gives you easy access from one computer to another. When you are done, you can
unmount the files by using the following commands:

host$ umount /mnt/bone
bone$ umount home

246 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Serving Web Pages from the Bone

Problem You want to use BeagleBone Black as a web server.

Solution BeagleBone Black already has the nginx web server running.

When you point your browser to 192.168.7.2, you are using the nginx web server. The web pages
are served from /var/www/html/. Add the HTML in A sample web page (test.html) to a file called
/var/www/html/test.html, and then point your browser to 192.168.7.2://test.html.

Listing 4.36: A sample web page (test.html)
1 <!DOCTYPE html>
2 <html>
3 <body>
4

5 <h1>My First Heading</h1>
6

7 <p>My first paragraph.</p>
8

9 </body>
10 </html>

test.html

You will see the web page shown in test.html as served by nginx.

Interacting with the Bone via a Web Browser

Problem BeagleBone Black is interacting with the physical world nicely and you want to display that
information on a web browser.

Solution Flask is a Python web framework built with a small core and easy-to-extend philosophy. Serv-
ing Web Pages from the Bone shows how to use nginx, the web server that’s already running. This recipe
shows how easy it is to build your own server. This is an adaptation of Python WebServer With Flask and
Raspberry Pi.

First, install flask:

bone$ sudo apt update
bone$ sudo apt install python3-flask

All the code in is the Cookbook repo:

bone$ git clone https://github.com/MarkAYoder/BoneCookbook
bone$ cd BoneCookbook/doc/06iod/code/flash

First Flask - hello, world

Our first example is helloWorld.py

Listing 4.37: Python code for flask hello world (helloWorld.py)
1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-

→˓398423cc6f5d
3

(continues on next page)

4.1. BeagleBone Cookbook 247

https://www.fullstackpython.com/flask.html
https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-398423cc6f5
https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-398423cc6f5

BeagleBoard Docs, Release 0.0.9

Fig. 4.50: test.html as served by nginx

248 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

4 from flask import Flask
5 app = Flask(__name__)
6 @app.route('/')
7 def index():
8 return 'hello, world'
9 if __name__ == '__main__':

10 app.run(debug=True, port=8080, host='0.0.0.0')

helloWorld.py

1. The first line loads the Flask module into your Python script.

2. The second line creates a Flask object called app.

3. The third line is where the action is, it says to run the index() function when someone accesses the
root URL (‘/’) of the server. In this case, send the text “hello, world” to the client’s web browser via
return.

4. The last line says to “listen” on port 8080, reporting any errors.

Now on your host computer, browse to 192.168.7.2:8080 flask an you should see.

Fig. 4.51: Test page served by our custom flask server

4.1. BeagleBone Cookbook 249

BeagleBoard Docs, Release 0.0.9

Adding a template

Let’s improve our “hello, world” application, by using an HTML template and a CSS file for styling our
page. Note: these have been created for you in the “templates” sub-folder. So, we will create a file named
index1.html, that has been saved in /templates.

Here’s what’s in templates/index1.html:

Listing 4.38: index1.html
1 <!DOCTYPE html>
2 <head>
3 <title>{{ title }}</title>
4 </head>
5 <body>
6 <h1>Hello, World!</h1>
7 <h2>The date and time on the server is: {{ time }}</h2>
8 </body>
9 </html>

index1.html

Note: a style sheet (style.css) is also included. This will be populated later.

Observe that anything in double curly braces within the HTML template is interpreted as a variable that
would be passed to it from the Python script via the render_template function. Now, let’s create a new
Python script. We will name it app1.py:

Listing 4.39: app1.py
1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-

→˓398423cc6f5d
3

4 '''
5 Code created by Matt Richardson
6 for details, visit: http://mattrichardson.com/Raspberry-Pi-Flask/inde...
7 '''
8 from flask import Flask, render_template
9 import datetime

10 app = Flask(__name__)
11 @app.route("/")
12 def hello():
13 now = datetime.datetime.now()
14 timeString = now.strftime("%Y-%m-%d %H:%M")
15 templateData = {
16 'title' : 'HELLO!',
17 'time': timeString
18 }
19 return render_template('index1.html', **templateData)
20 if __name__ == "__main__":
21 app.run(host='0.0.0.0', port=8080, debug=True)
22

app1.py

Note that we create a formatted string(“timeString”) using the date and time from the “now” object, that
has the current time stored on it.

Next important thing on the above code, is that we created a dictionary of variables (a set of keys, such
as the title that is associated with values, such as HELLO!) to pass into the template. On “return”, we will
return the index.html template to the web browser using the variables in the templateData dictionary.

250 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Execute the Python script:

bone$.\app.py

Open any web browser and browse to 192.168.7.2:8080. You should see:

Fig. 4.52: Test page served by app1.py

Note that the page’s content changes dynamically any time that you refresh it with the actual variable
data passed by Python script. In our case, “title” is a fixed value, but “time” change it every second.

Displaying GPIO Status in a Web Browser - reading a button

Problem You want a web page to display the status of a GPIO pin.

Solution This solution builds on the Flask-based web server solution in Interacting with the Bone via a
Web Browser.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Pushbutton switch.

Wire your pushbutton as shown in Diagram for wiring a pushbutton and magnetic reed switch input.

Wire a button to P9_11 and have the web page display the value of the button.

Let’s use a new Python script named app2.py.

4.1. BeagleBone Cookbook 251

BeagleBoard Docs, Release 0.0.9

Listing 4.40: A simple Flask-based web server to read a GPIO
(app2.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-

→˓398423cc6f5d
3 import os
4 from flask import Flask, render_template
5 app = Flask(__name__)
6

7 pin = '30' # P9_11 is gpio 30
8 GPIOPATH="/sys/class/gpio"
9 buttonSts = 0

10

11 # Make sure pin is exported
12 if (not os.path.exists(GPIOPATH+"/gpio"+pin)):
13 f = open(GPIOPATH+"/export", "w")
14 f.write(pin)
15 f.close()
16

17 # Make it an input pin
18 f = open(GPIOPATH+"/gpio"+pin+"/direction", "w")
19 f.write("in")
20 f.close()
21

22 @app.route("/")
23 def index():
24 # Read Button Status
25 f = open(GPIOPATH+"/gpio"+pin+"/value", "r")
26 buttonSts = f.read()[:-1]
27 f.close()
28

29 # buttonSts = GPIO.input(button)
30 templateData = {
31 'title' : 'GPIO input Status!',
32 'button' : buttonSts,
33 }
34 return render_template('index2.html', **templateData)
35 if __name__ == "__main__":
36 app.run(host='0.0.0.0', port=8080, debug=True)

app2.py

Look that what we are doing is defining the button on P9_11 as input, reading its value and storing it in
buttonSts. Inside the function index(), we will pass that value to our web page through “button” that is
part of our variable dictionary: templateData.

Let’s also see the new index2.html to show the GPIO status:

Listing 4.41: A simple Flask-based web server to read a GPIO (in-
dex2.html)

1 <!DOCTYPE html>
2 <head>
3 <title>{{ title }}</title>
4 <link rel="stylesheet" href='../static/style.css'/>
5 </head>
6 <body>
7 <h1>{{ title }}</h1>

(continues on next page)

252 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

8 <h2>Button pressed: {{ button }}</h1>
9 </body>

10 </html>

index2.html

Now, run the following command:

bone$./app2.py

Point your browser to http://192.168.7.2:8080, and the page will look like Status of a GPIO pin on a web
page.

Fig. 4.53: Status of a GPIO pin on a web page

Currently, the 0 shows that the button isn’t pressed. Try refreshing the page while pushing the button,
and you will see 1 displayed.

It’s not hard to assemble your own HTML with the GPIO data. It’s an easy extension to write a program
to display the status of all the GPIO pins.

Controlling GPIOs

Problem You want to control an LED attached to a GPIO pin.

4.1. BeagleBone Cookbook 253

BeagleBoard Docs, Release 0.0.9

Solution Now that we know how to “read” GPIO Status, let’s change them. What we will do will
control the LED via the web page. We have an LED connected to P9_14. Controlling remotely we will
change its status from LOW to HIGH and vice-versa.

The python script Let’s create a new Python script and named it app3.py.

A simple Flask-based web server to read a GPIO (app3.py)

include::code/flask/app3.py

What we have new on above code is the new “route”:

@app.route(“/<deviceName>/<action>”)

From the webpage, calls will be generated with the format:

http://192.168.7.2:8081/ledRed/on

or

http://192.168.7.2:8081/ledRed/off

For the above example, ledRed is the “deviceName” and on or off are examples of possible “action”. Those
routes will be identified and properly “worked”. The main steps are:

• Convert the string “ledRED”, for example, on its equivalent GPIO pin. The integer variable ledRed
is equivalent to P9_14. We store this value on variable “actuator”

• For each actuator, we will analyze the “action”, or “command” and act properly. If “action = on”
for example, we must use the command: GPIO.output(actuator, GPIO.HIGH)

• Update the status of each actuator

• Update the variable library

• Return the data to index.html

Let’s now create an index.html to show the GPIO status of each actuator and more important, create
“buttons” to send the commands:

Listing 4.42: A simple Flask-based web server to write a GPIO (in-
dex3.html)

1 <!DOCTYPE html>
2 <head>
3 <title>GPIO Control</title>
4 <link rel="stylesheet" href='../static/style.css'/>
5 </head>
6 <body>
7 <h2>Actuators</h2>
8 <h3> Status </h3>
9 RED LED ==> {{ ledRed }}

10

11 <h3> Commands </h3>
12 RED LED Ctrl ==>
13 TURN ON
14 TURN OFF
15 </body>
16 </html>
17

index3.html

bone$./app3.py

254 Chapter 4. Books

http://192.168.7.2:8081/ledRed/on
http://192.168.7.2:8081/ledRed/off

BeagleBoard Docs, Release 0.0.9

Point your browser as before and you will see:

Status of a GPIO pin on a web page

Try clicking the “TURN ON” and “TURN OFF” buttons and your LED will respond.

app4.py and app5.py combine the previous apps. Try them out.

Plotting Data

Problem You have live, continuous, data coming into your Bone via one of the Analog Ins, and you
want to plot it.

Solution Analog in - Continuous (This is based on information at: http://software-dl.ti.com/
processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.
html#Continuous%20Mode)

Reading a continuous analog signal requires some set up. First go to the iio devices directory.

bone$ cd /sys/bus/iio/devices/iio:device0
bone$ ls -F
buffer/ in_voltage0_raw in_voltage2_raw in_voltage4_raw in_voltage6_raw name ␣
→˓ power/ subsystem@
dev in_voltage1_raw in_voltage3_raw in_voltage5_raw in_voltage7_raw of_node@␣
→˓ scan_elements/ uevent

4.1. BeagleBone Cookbook 255

http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode
http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode
http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode

BeagleBoard Docs, Release 0.0.9

Here you see the files used to read the one shot values. Look in scan_elements to see how to enable
continuous input.

bone$ ls scan_elements
in_voltage0_en in_voltage1_index in_voltage2_type in_voltage4_en in_
→˓voltage5_index in_voltage6_type
in_voltage0_index in_voltage1_type in_voltage3_en in_voltage4_index in_
→˓voltage5_type in_voltage7_en
in_voltage0_type in_voltage2_en in_voltage3_index in_voltage4_type in_
→˓voltage6_en in_voltage7_index
in_voltage1_en in_voltage2_index in_voltage3_type in_voltage5_en in_
→˓voltage6_index in_voltage7_type

Here you see three values for each analog input, _en (enable), _index (index of this channel in the
buffer’s chunks) and _type (How the ADC stores its data). (See the link above for details.) Let’s use the
input at P9.40 which is AIN1. To enable this input:

bone$ echo 1 > scan_elements/in_voltage1_en

Next set the buffer size.

bone$ ls buffer
data_available enable length watermark

Let’s use a 512 sample buffer. You might need to experiment with this.

bone$ echo 512 > buffer/length

Then start it running.

bone$ echo 1 > buffer/enable

Now, just read from */dev/iio:device0*.

An example Python program that does the above and the reads and plot the buffer is here: analogInCon-
tinuous.py

Listing 4.43: Code to read and plot a continuous analog in-
put(analogInContinuous.py)

1 #!/usr/bin/python
2 #//////////////////////////////////////
3 # analogInContinuous.py
4 # Read analog data via IIO continous mode and plots it.
5 #//////////////////////////////////////
6 # From: https://stackoverflow.com/questions/20295646/python-ascii-plots-in-terminal
7 # https://github.com/dkogan/gnuplotlib
8 # https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org
9 # sudo apt install gnuplot (10 minute to install)

10 # sudo apt install libatlas-base-dev
11 # pip3 install gnuplotlib
12 # This uses X11, so when connecting to the bone from the host use: ssh -X bone
13

14 # See https://elinux.org/index.php?title=EBC_Exercise_10a_Analog_In#Analog_in_-_
→˓Continuous.2C_Change_the_sample_rate

15 # for instructions on changing the sampling rate. Can go up to 200KHz.
16

17 fd = open(IIODEV, "r")
18 import numpy as np

(continues on next page)

256 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.54: 1KHz sine wave sampled at 8KHz

4.1. BeagleBone Cookbook 257

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

19 import gnuplotlib as gp
20 import time
21 # import struct
22

23 IIOPATH='/sys/bus/iio/devices/iio:device0'
24 IIODEV='/dev/iio:device0'
25 LEN = 100
26 SAMPLERATE=8000
27 AIN='2'
28

29 # Setup IIO for Continous reading
30 # Enable AIN
31 try:
32 file1 = open(IIOPATH+'/scan_elements/in_voltage'+AIN+'_en', 'w')
33 file1.write('1')
34 file1.close()
35 except: # carry on if it's already enabled
36 pass
37 # Set buffer length
38 file1 = open(IIOPATH+'/buffer/length', 'w')
39 file1.write(str(2*LEN)) # I think LEN is in 16-bit values, but here we pass bytes
40 file1.close()
41 # Enable continous
42 file1 = open(IIOPATH+'/buffer/enable', 'w')
43 file1.write('1')
44 file1.close()
45

46 x = np.linspace(0, 1000*LEN/SAMPLERATE, LEN)
47 # Do a dummy plot to give time of the fonts to load.
48 gp.plot(x, x)
49 print("Waiting for fonts to load")
50 time.sleep(10)
51

52 print('Hit ^C to stop')
53

54 fd = open(IIODEV, "r")
55

56 try:
57 while True:
58 y = np.fromfile(fd, dtype='uint16', count=LEN)*1.8/4096
59 # print(y)
60 gp.plot(x, y,
61 xlabel = 't (ms)',
62 ylabel = 'volts',
63 _yrange = [0, 2],
64 title = 'analogInContinuous',
65 legend = np.array(("P9.39",),),
66 # ascii=1,
67 # terminal="xterm",
68 # legend = np.array(("P9.40", "P9.38"),),
69 # _with = 'lines'
70)
71

72 except KeyboardInterrupt:
73 print("Turning off input.")
74 # Disable continous

(continues on next page)

258 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

75 file1 = open(IIOPATH+'/buffer/enable', 'w')
76 file1.write('0')
77 file1.close()
78

79 file1 = open(IIOPATH+'/scan_elements/in_voltage'+AIN+'_en', 'w')
80 file1.write('0')
81 file1.close()
82

83 # // Bone | Pocket | AIN
84 # // ----- | ------ | ---
85 # // P9_39 | P1_19 | 0
86 # // P9_40 | P1_21 | 1
87 # // P9_37 | P1_23 | 2
88 # // P9_38 | P1_25 | 3
89 # // P9_33 | P1_27 | 4
90 # // P9_36 | P2_35 | 5
91 # // P9_35 | P1_02 | 6

analogInContinuous.py

Be sure to read the instillation instructions in the comments. Also note this uses X windows and you
need to ssh -X 192.168.7.2 for X to know where the display is.

Run it:

host$ ssh -X bone

bone$ cd <Cookbook repo>/doc/06iot/code>/strong>
bone$./analogInContinuous.py
Hit ^C to stop

1KHz sine wave sampled at 8KHz is the output of a 1KHz sine wave.

It’s a good idea to disable the buffer when done.

bone$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

Analog in - Continuous, Change the sample rate

The built in ADCs sample at 8k samples/second by default. They can run as fast as 200k samples/second
by editing a device tree.

bone$ cd /opt/source/bb.org-overlays
bone$ make

This will take a while the first time as it compiles all the device trees.

bone$ vi src/arm/src/arm/BB-ADC-00A0.dts

Around line 57 you’ll see

Line Code
57 // For each step, number of adc clock cycles to wait between setting up muxes␣
→˓and sampling.
58 // range: 0 .. 262143
59 // optional, default is 152 (XXX but why?!)
60 ti,chan-step-opendelay = <152 152 152 152 152 152 152 152>;

(continues on next page)

4.1. BeagleBone Cookbook 259

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

61 //`
62 // XXX is there any purpose to set this nonzero other than to fine-tune the␣
→˓sample rate?
63
64
65 // For each step, how many times it should sample to average.
66 // range: 1 .. 16, must be power of two (i.e. 1, 2, 4, 8, or 16)
67 // optional, default is 16
68 ti,chan-step-avg = <16 16 16 16 16 16 16 16>;

The comments give lots of details on how to adjust the device tree to change the sample rate. Line 68
says for every sample returned, average 16 values. This will give you a cleaner signal, but if you want to
go fast, change the 16’s to 1’s. Line 60 says to delay 152 cycles between each sample. Set this to 0 to got
as fast a possible.

ti,chan-step-avg = <1 1 1 1 1 1 1 1>;
ti,chan-step-opendelay = <0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00>;

Now compile it.

bone$ make
DTC src/arm/BB-ADC-00A0.dtbo

gcc -o config-pin ./tools/pmunts_muntsos/config-pin.c

It knows to only recompile the file you just edited. Now install and reboot.

bone$ sudo make install
...
'src/arm/AM335X-PRU-UIO-00A0.dtbo' -> '/lib/firmware/AM335X-PRU-UIO-00A0.dtbo'
'src/arm/BB-ADC-00A0.dtbo' -> '/lib/firmware/BB-ADC-00A0.dtbo'
'src/arm/BB-BBBMINI-00A0.dtbo' -> '/lib/firmware/BB-BBBMINI-00A0.dtbo'
...
bone$ reboot

A number of files get installed, including the ADC file. Now try rerunning.

bone$ cd <Cookbook repo>/docs/06iot/code>
bone$./analogInContinuous.py
Hit ^C to stop

Here’s the output of a 10KHz sine wave.

It’s still a good idea to disable the buffer when done.

bone$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

Sending an Email

Problem You want to send an email via Gmail from the Bone.

Solution This example came from https://realpython.com/python-send-email/. First, you need to set
up a Gmail account, if you don’t already have one. Then add the code in Sending email using nodemailer
(emailtTest.py) to a file named emailTest.py. Substitute your own Gmail username. For the password:

• Go to: https://myaccount.google.com/security

• Select App password.

260 Chapter 4. Books

https://realpython.com/python-send-email/
https://mail.google.co
https://mail.google.co
https://myaccount.google.com/security

BeagleBoard Docs, Release 0.0.9

Fig. 4.55: 10KHz triangle wave sampled at 200KHz

4.1. BeagleBone Cookbook 261

BeagleBoard Docs, Release 0.0.9

• Generate your own 16 char password and copy it into emailTest.py.

• Be sure to delete password when done https://myaccount.google.com/apppasswords .

Listing 4.44: Sending email using nodemailer (emailtTest.py)
1 #!/usr/bin/env python
2 # From: https://realpython.com/python-send-email/
3 import smtplib, ssl
4

5 port = 587 # For starttls
6 smtp_server = "smtp.gmail.com"
7 sender_email = "from_account@gmail.com"
8 receiver_email = "to_account@gmail.com"
9 # Go to: https://myaccount.google.com/security

10 # Select App password
11 # Generate your own 16 char password, copy here
12 # Delete password when done
13 password = "cftqhcejjdjfdwjh"
14 message = """\
15 Subject: Testing email
16

17 This message is sent from Python.
18

19 """
20 context = ssl.create_default_context()
21 with smtplib.SMTP(smtp_server, port) as server:
22 server.starttls(context=context)
23 server.login(sender_email, password)
24 server.sendmail(sender_email, receiver_email, message)

emailTest.py

Then run the script to send the email:

bone$ chmod *x emailTest.py
bone$.\emailTest.py

Warning: This solution requires your Gmail password to be in plain text in a file, which is a security
problem. Make sure you know who has access to your Bone. Also, if you remove the microSD card,
make sure you know who has access to it. Anyone with your microSD card can read your Gmail
password.

Be careful about putting this into a loop. Gmail presently limits you to 500 emails per day and 10 MB
per message.

See https://realpython.com/python-send-email/ for an example that sends an attached file.

Sending an SMS Message

Problem You want to send a text message from BeagleBone Black.

Solution There are a number of SMS services out there. This recipe uses Twilio because you can use it
for free, but you will need to verify the number to which you are texting. First, go to Twilio’s home page
and set up an account. Note your account SID and authorization token. If you are using the free version,
be sure to verify your numbers.

Next, install Trilio by using the following command:

262 Chapter 4. Books

https://myaccount.google.com/apppasswords
http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail
http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail
https://realpython.com/python-send-email/
http://bit.ly/1MrHBBF
https://www.twilio.com/
http://bit.ly/19c7GZ7

BeagleBoard Docs, Release 0.0.9

bone$ npm install -g twilio

Finally, add the code in Sending SMS messages using Twilio (twilio-test.js) to a file named twilio-test.js
and run it. Your text will be sent.

Listing 4.45: Sending SMS messages using Twilio (twilio-test.
js)

1 #!/usr/bin/env node
2 // From: http://twilio.github.io/twilio-node/
3 // Twilio Credentials
4 var accountSid = '';
5 var authToken = '';
6

7 //require the Twilio module and create a REST client
8 var client = require('twilio')(accountSid, authToken);
9

10 client.messages.create({
11 to: "812555121",
12 from: "+2605551212",
13 body: "This is a test",
14 }, function(err, message) {
15 console.log(message.sid);
16 });
17

18 // https://github.com/twilio/twilio-node/blob/master/LICENSE
19 // The MIT License (MIT)
20 // Copyright (c) 2010 Stephen Walters
21 // Copyright (c) 2012 Twilio Inc.
22

23 // Permission is hereby granted, free of charge, to any person obtaining a copy of
24 // this software and associated documentation files (the "Software"), to deal in
25 // the Software without restriction, including without limitation the rights to
26 // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
27 // of the Software, and to permit persons to whom the Software is furnished to do
28 // so, subject to the following conditions:
29

30 // The above copyright notice and this permission notice shall be included in
31 // all copies or substantial portions of the Software.
32

33 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
34 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
35 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
36 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
37 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
38 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
39 // DEALINGS IN THE SOFTWARE.

twilio-test.js nodemailer-test.js

Twilio allows a small number of free text messages, enough to test your code and to play around some.

Displaying the Current Weather Conditions

Problem You want to display the current weather conditions.

4.1. BeagleBone Cookbook 263

BeagleBoard Docs, Release 0.0.9

Solution Because your Bone is on the network, it’s not hard to access the current weather conditions
from a weather API.

• Go to https://openweathermap.org/ and create an account.

• Go to https://home.openweathermap.org/api_keys and get your API key.

• Store your key in the bash variable APPID.

bash$ export APPID="Your key"

• Then add the code in Code for getting current weather conditions (weather.py) to a file named
weather.js.

• Run the pyhon script.

Listing 4.46: Code for getting current weather conditions
(weather.py)

1 #!/usr/bin/env python3
2 # Displays current weather and forcast
3 import os
4 import sys
5 from datetime import datetime
6 import requests # For getting weather
7

8 # http://api.openweathermap.org/data/2.5/onecall
9 params = {

10 'appid': os.environ['APPID'],
11 # 'city': 'brazil,indiana',
12 'exclude': "minutely,hourly",
13 'lat': '39.52',
14 'lon': '-87.12',
15 'units': 'imperial'
16 }
17 urlWeather = "http://api.openweathermap.org/data/2.5/onecall"
18

19 print("Getting weather")
20

21 try:
22 r = requests.get(urlWeather, params=params)
23 if(r.status_code==200):
24 # print("headers: ", r.headers)
25 # print("text: ", r.text)
26 # print("json: ", r.json())
27 weather = r.json()
28 print("Temp: ", weather['current']['temp']) # <1>
29 print("Humid:", weather['current']['humidity'])
30 print("Low: ", weather['daily'][1]['temp']['min'])
31 print("High: ", weather['daily'][0]['temp']['max'])
32 day = weather['daily'][0]['sunrise']-weather['timezone_offset']
33 print("sunrise: " + datetime.utcfromtimestamp(day).strftime('%Y-%m-%d %H:%M:

→˓%S'))
34 # print("Day: " + datetime.utcfromtimestamp(day).strftime('%a'))
35 # print("weather: ", weather['daily'][1]) # <2>
36 # print("weather: ", weather) # <3>
37 # print("icon: ", weather['current']['weather'][0]['icon'])
38 # print()
39

40 else:
(continues on next page)

264 Chapter 4. Books

https://openweathermap.org/
https://home.openweathermap.org/api_keys

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

41 print("status_code: ", r.status_code)
42 except IOError:
43 print("File not found: " + tmp101)
44 print("Have you run setup.sh?")
45 except:
46 print("Unexpected error:", sys.exc_info())

weather.py

1. Prints current conditions.

2. Prints the forecast for the next day.

3. Prints everything returned by the weather site.

Run this by using the following commands:

bone$ chmod *x weather.py
bone$./weather.js
Getting weather
Temp: 85.1
Humid: 50
Low: 62.02
High: 85.1
sunrise: 2022-07-14 14:32:46

The weather API returns lots of information. Use Python to extract the information you want.

Sending and Receiving Tweets

Problem You want to send and receive tweets (Twitter posts) with your Bone.

Solution Twitter has a whole git repo of sample code for interacting with Twitter. Here I’ll show how
to create a tweet and then how to delete it.

Creating a Project and App

• Follow the directions here to create a project and and app.

• Be sure to giv eyour app Read and Write permission.

• Then go to the developer portal and select you app by clicking on the gear icon to the right of the
app name.

• Click on the Keys and tokens tab. Here you can get to all your keys and tokens.

Tip: Be sure to record them, you can’t get them later.

• Open the file twitterKeys.sh and record your keys in it.

export API_KEY='XXX'
export API_SECRET_KEY='XXX'
export BEARER_TOKEN='XXX'
export TOKEN='4XXX'
export TOKEN_SECRET='XXX'

• Next, source the file so the values will appear in your bash session.

4.1. BeagleBone Cookbook 265

https://twitter.com
https://github.com/twitterdev/Twitter-API-v2-sample-code
https://developer.twitter.com/en/docs/apps/overview
https://developer.twitter.com/en/portal/projects-and-apps

BeagleBoard Docs, Release 0.0.9

bash$ source twitterKeys.sh

You’ll need to do this every time you open a new bash window.

Creating a tweet

Add the code in Create a Tweet (twitter_create_tweet.py) to a file called twitter_create_tweet_.py and
run it to see your timeline.

Listing 4.47: Create a Tweet (twitter_create_tweet.py)
1 #!/usr/bin/env python
2 # From: https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/Manage-

→˓Tweets/create_tweet.py
3 from requests_oauthlib import OAuth1Session
4 import os
5 import json
6

7 # In your terminal please set your environment variables by running the following␣
→˓lines of code.

8 # export 'API_KEY'='<your_consumer_key>'
9 # export 'API_SECRET_KEY'='<your_consumer_secret>'

10

11 consumer_key = os.environ.get("API_KEY")
12 consumer_secret = os.environ.get("API_SECRET_KEY")
13

14 # Be sure to add replace the text of the with the text you wish to Tweet. You can␣
→˓also add parameters to post polls, quote Tweets, Tweet with reply settings, and␣
→˓Tweet to Super Followers in addition to other features.

15 payload = {"text": "Hello world!"}
16

17 # Get request token
18 request_token_url = "https://api.twitter.com/oauth/request_token?oauth_callback=oob&x_

→˓auth_access_type=write"
19 oauth = OAuth1Session(consumer_key, client_secret=consumer_secret)
20

21 try:
22 fetch_response = oauth.fetch_request_token(request_token_url)
23 except ValueError:
24 print(
25 "There may have been an issue with the consumer_key or consumer_secret you␣

→˓entered."
26)
27

28 resource_owner_key = fetch_response.get("oauth_token")
29 resource_owner_secret = fetch_response.get("oauth_token_secret")
30 print("Got OAuth token: %s " % resource_owner_key)
31

32 # Get authorization
33 base_authorization_url = "https://api.twitter.com/oauth/authorize"
34 authorization_url = oauth.authorization_url(base_authorization_url)
35 print("Please go here and authorize: %s " % authorization_url)
36 verifier = input("Paste the PIN here: ")
37

38 # Get the access token
39 access_token_url = "https://api.twitter.com/oauth/access_token"
40 oauth = OAuth1Session(

(continues on next page)

266 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

41 consumer_key,
42 client_secret=consumer_secret,
43 resource_owner_key=resource_owner_key,
44 resource_owner_secret=resource_owner_secret,
45 verifier=verifier,
46)
47 oauth_tokens = oauth.fetch_access_token(access_token_url)
48

49 access_token = oauth_tokens["oauth_token"]
50 access_token_secret = oauth_tokens["oauth_token_secret"]
51

52 # Make the request
53 oauth = OAuth1Session(
54 consumer_key,
55 client_secret=consumer_secret,
56 resource_owner_key=access_token,
57 resource_owner_secret=access_token_secret,
58)
59

60 # Making the request
61 response = oauth.post(
62 "https://api.twitter.com/2/tweets",
63 json=payload,
64)
65

66 if response.status_code != 201:
67 raise Exception(
68 "Request returned an error: {} {} ".format(response.status_code, response.

→˓text)
69)
70

71 print("Response code: {} ".format(response.status_code))
72

73 # Saving the response as JSON
74 json_response = response.json()
75 print(json.dumps(json_response, indent=4, sort_keys=True))

twitter_create_tweet.py

Run the code and you’ll have to authorize.

bash$./twitter_create_tweet.py
Got OAuth token: tWBldQAAAAAAWBJgAAABggJt7qg
Please go here and authorize: https://api.twitter.com/oauth/authorize?oauth_
→˓token=tWBldQAAAAAAWBJgAAABggJt7qg
Paste the PIN here: 4859044
Response code: 201
{

"data": {
"id": "1547963178700533760",
"text": "Hello world!"

}
}

Check your twitter account and you’ll see the new tweet. Record the id number and we’ll use it next to
delete the tweet.

4.1. BeagleBone Cookbook 267

BeagleBoard Docs, Release 0.0.9

Deleting a tweet

Use the code in Code to delete a tweet (twitter_delete_tweet.py) to delete a tweet. Around line 15 is the id
number. Paste in the value returned above.

Listing 4.48: Code to delete a tweet (twitter_delete_tweet.py)
1 #!/usr/bin/env python
2 # From: https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/Manage-

→˓Tweets/delete_tweet.py
3 from requests_oauthlib import OAuth1Session
4 import os
5 import json
6

7 # In your terminal please set your environment variables by running the following␣
→˓lines of code.

8 # export 'API_KEY'='<your_consumer_key>'
9 # export 'API_SECRET_KEY'='<your_consumer_secret>'

10

11 consumer_key = os.environ.get("API_KEY")
12 consumer_secret = os.environ.get("API_SECRET_KEY")
13

14 # Be sure to replace tweet-id-to-delete with the id of the Tweet you wish to delete.␣
→˓The authenticated user must own the list in order to delete

15 id = "1547963178700533760"
16

17 # Get request token
18 request_token_url = "https://api.twitter.com/oauth/request_token?oauth_callback=oob&x_

→˓auth_access_type=write"
19 oauth = OAuth1Session(consumer_key, client_secret=consumer_secret)
20

21 try:
22 fetch_response = oauth.fetch_request_token(request_token_url)
23 except ValueError:
24 print(
25 "There may have been an issue with the consumer_key or consumer_secret you␣

→˓entered."
26)
27

28 resource_owner_key = fetch_response.get("oauth_token")
29 resource_owner_secret = fetch_response.get("oauth_token_secret")
30 print("Got OAuth token: %s " % resource_owner_key)
31

32 # Get authorization
33 base_authorization_url = "https://api.twitter.com/oauth/authorize"
34 authorization_url = oauth.authorization_url(base_authorization_url)
35 print("Please go here and authorize: %s " % authorization_url)
36 verifier = input("Paste the PIN here: ")
37

38 # Get the access token
39 access_token_url = "https://api.twitter.com/oauth/access_token"
40 oauth = OAuth1Session(
41 consumer_key,
42 client_secret=consumer_secret,
43 resource_owner_key=resource_owner_key,
44 resource_owner_secret=resource_owner_secret,
45 verifier=verifier,
46)

(continues on next page)

268 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

47 oauth_tokens = oauth.fetch_access_token(access_token_url)
48

49 access_token = oauth_tokens["oauth_token"]
50 access_token_secret = oauth_tokens["oauth_token_secret"]
51

52 # Make the request
53 oauth = OAuth1Session(
54 consumer_key,
55 client_secret=consumer_secret,
56 resource_owner_key=access_token,
57 resource_owner_secret=access_token_secret,
58)
59

60 # Making the request
61 response = oauth.delete("https://api.twitter.com/2/tweets/{} ".format(id))
62

63 if response.status_code != 200:
64 raise Exception(
65 "Request returned an error: {} {} ".format(response.status_code, response.

→˓text)
66)
67

68 print("Response code: {} ".format(response.status_code))
69

70 # Saving the response as JSON
71 json_response = response.json()
72 print(json_response)

twitter_delete_tweet.py

The code in Tweet when a button is pushed (twitterPushbutton.js) snds a tweet whenever a button is
pushed.

Listing 4.49: Tweet when a button is pushed (twitterPushbutton.js)
1 #!/usr/bin/env node
2 // From: https://www.npmjs.org/package/node-twitter
3 // Tweets with attached image media (JPG, PNG or GIF) can be posted
4 // using the upload API endpoint.
5 var Twitter = require('node-twitter');
6 var b = require('bonescript');
7 var key = require('./twitterKeys');
8 var gpio = "P9_42";
9 var count = 0;

10

11 b.pinMode(gpio, b.INPUT);
12 b.attachInterrupt(gpio, sendTweet, b.FALLING);
13

14 var twitterRestClient = new Twitter.RestClient(
15 key.API_KEY, key.API_SECRET,
16 key.TOKEN, key.TOKEN_SECRET
17);
18

19 function sendTweet() {
20 console.log("Sending...");
21 count++;
22

(continues on next page)

4.1. BeagleBone Cookbook 269

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

23 twitterRestClient.statusesUpdate(
24 {'status': 'Posting tweet ' + count + ' via my BeagleBone Black', },
25 function(error, result) {
26 if (error) {
27 console.log('Error: ' +
28 (error.code ? error.code + ' ' + error.message : error.message));
29 }
30

31 if (result) {
32 console.log(result);
33 }
34 }
35);
36 }
37

38 // node-twitter is made available under terms of the BSD 3-Clause License.
39 // http://www.opensource.org/licenses/BSD-3-Clause

twitterPushbutton.js

To see many other examples, go to iStrategyLabs node-twitter GitHub page.

This opens up many new possibilities. You can read a temperature sensor and tweet its value whenever
it changes, or you can turn on an LED whenever a certain hashtag is used. What are you going to tweet?

Wiring the IoT with Node-RED

Problem You want BeagleBone to interact with the Internet, but you want to program it graphically.

Solution Node-RED is a visual tool for wiring the IoT. It makes it easy to turn on a light when a certain
hashtag is tweeted, or spin a motor if the forecast is for hot weather.

Installing Node-RED

To install Node-RED, run the following commands:

bone$ cd # Change to home directory
bone$ git clone https://github.com/node-red/node-red.git
bone$ cd node-red/
bone$ npm install --production # almost 6 minutes
bone$ cd nodes
bone$ git clone https://github.com/node-red/node-red-nodes.git # 2 seconds
bone$ cd ~/node-red

To run Node-RED, use the following commands:

bone$ cd ~/node-red
bone$ node red.js
Welcome to Node-RED

• 18 Aug 16:31:43 - [red] Version: 0.8.1.git

• 18 Aug 16:31:43 - [red] Loading palette nodes

• 18 Aug 16:31:49 - [26-rawserial.js] Info : only really needed for Windows boxes without serialport
npm module installed.

270 Chapter 4. Books

http://bit.ly/18AvST
http://nodered.org/

BeagleBoard Docs, Release 0.0.9

• 18 Aug 16:31:56 - ——————————————

• 18 Aug 16:31:56 - [red] Failed to register 44 node types

• 18 Aug 16:31:56 - [red] Run with -v for details

• 18 Aug 16:31:56 - ——————————————

• 18 Aug 16:31:56 - [red] Server now running at http://127.0.0.1:1880/

• 18 Aug 16:31:56 - [red] Loading flows : flows_yoder-debian-bone.json

The second-to-last line informs you that Node-RED is listening on part 1880. Point your browser to
http://192.168.7.2:1880, and you will see the screen shown in The Node-RED web page.

Fig. 4.56: The Node-RED web page

Building a Node-RED Flow

The example in this recipe builds a Node-RED flow that will toggle an LED whenever a certain hashtag
is tweeted. But first, you need to set up the Node-RED flow with the twitter node:

• On the Node-RED web page, scroll down until you see the social nodes on the left side of the page.

• Drag the twitter node to the canvas, as shown in Node-RED twitter node.

Authorize Twitter by double-clicking the twitter node. You’ll see the screen shown in Node-RED Twitter
authorization, step 1.

Click the pencil button to bring up the dialog box shown in Node-RED twitter authorization, step 2.

• Click the “here” link, as shown in Node-RED twitter authorization, step 2, and you’ll be taken to
Twitter to authorize Node-RED.

4.1. BeagleBone Cookbook 271

http://127.0.0.1:1880/
http://192.168.7.2:1880

BeagleBoard Docs, Release 0.0.9

Fig. 4.57: Node-RED twitter node

272 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.58: Node-RED Twitter authorization, step 1

4.1. BeagleBone Cookbook 273

BeagleBoard Docs, Release 0.0.9

Fig. 4.59: Node-RED twitter authorization, step 2

274 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

• Log in to Twitter and click the “Authorize app” button (Node-RED Twitter site authorization).

Fig. 4.60: Node-RED Twitter site authorization

• When you’re back to Node-RED, click the Add button, add your Twitter credentials, enter the
hashtags to respond to (Node-RED adding the #BeagleBone hashtag), and then click the Ok button.

• Go back to the left panel, scroll up to the top, and then drag the debug node to the canva- (debug
is in the output section.)

• Connect the two nodes by clicking and dragging (Node-RED Twitter adding debug node and connect-
ing).

• In the right panel, in the upper-right corner, click the “debug” tab.

• Finally, click the Deploy button above the “debug” tab.

Your Node-RED flow is now running on the Bone. Test it by going to Twitter and tweeting something
with the hashtag #BeagleBone. Your Bone is now responding to events happening out in the world.

Adding an LED Toggle

Now, we’re ready to add the LED toggle:

• Wire up an LED as shown in Toggling an External LED. Mine is wired to P9_14.

• Scroll to the bottom of the left panel and drag the bbb-discrete-out node (second from the bottom
of the bbb nodes) to the canvas and wire it (Node-RED adding bbb-discrete-out node).

Double-click the node, select your GPIO pin and “Toggle state,” and then set “Startup as” to 1 (Node-RED
adding bbb-discrete-out configuration).

Click Ok and then Deploy.

4.1. BeagleBone Cookbook 275

BeagleBoard Docs, Release 0.0.9

Fig. 4.61: Node-RED adding the #BeagleBone hashtag

276 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.62: Node-RED Twitter adding debug node and connecting

4.1. BeagleBone Cookbook 277

BeagleBoard Docs, Release 0.0.9

Fig. 4.63: Node-RED adding bbb-discrete-out node

278 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.64: Node-RED adding bbb-discrete-out configuration

4.1. BeagleBone Cookbook 279

BeagleBoard Docs, Release 0.0.9

Test again. The LED will toggle every time the hashtag #BeagleBone is tweeted. With a little more
exploring, you should be able to have your Bone ringing a bell or spinning a motor in response to tweets.

Communicating over a Serial Connection to an Arduino or LaunchPad

Problem You would like your Bone to talk to an Arduino or LaunchPad.

Solution The common serial port (also know as a UART) is the simplest way to talk between the two.
Wire it up as shown in Wiring a LaunchPad to a Bone via the common serial port.

Warning: BeagleBone Black runs at 3.3 V. When wiring other devices to it, ensure that they are also
3.3 V. The LaunchPad I’m using is 3.3 V, but many Arduinos are 5.0 V and thus won’t work. Or worse,
they might damage your Bone.

Fig. 4.65: Wiring a LaunchPad to a Bone via the common serial port

Add the code (or sketch, as it’s called in Arduino-speak) in LaunchPad code for communicating via the
UART (launchPad.ino) to a file called launchPad.ino and run it on your LaunchPad.

Listing 4.50: LaunchPad code for communicating via the UART
(launchPad.ino)

1 /*
2 Tests connection to a BeagleBone
3 Mark A. Yoder
4 Waits for input on Serial Port
5 g - Green toggle
6 r - Red toggle
7 */
8 char inChar = 0; // incoming serial byte
9 int red = 0;

(continues on next page)

280 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

10 int green = 0;
11

12 void setup()
13 {
14 // initialize the digital pin as an output.
15 pinMode(RED_LED, OUTPUT); // <1>
16 pinMode(GREEN_LED, OUTPUT);
17 // start serial port at 9600 bps:
18 Serial.begin(9600); // <2>
19 Serial.print("Command (r, g): "); // <3>
20

21 digitalWrite(GREEN_LED, green); // <4>
22 digitalWrite(RED_LED, red);
23 }
24

25 void loop()
26 {
27 if(Serial.available() > 0) { // <5>
28 inChar = Serial.read();
29 switch(inChar) { // <6>
30 case 'g':
31 green = ~green;
32 digitalWrite(GREEN_LED, green);
33 Serial.println("Green");
34 break;
35 case 'r':
36 red = ~red;
37 digitalWrite(RED_LED, red);
38 Serial.println("Red");
39 break;
40 }
41 Serial.print("Command (r, g): ");
42 }
43 }
44

launchPad.ino

1. Set the mode for the built-in red and green LEDs.

2. Start the serial port at 9600 baud.

3. Prompt the user, which in this case is the Bone.

4. Set the LEDs to the current values of the red and green variables.

5. Wait for characters to arrive on the serial port.

6. After the characters are received, read it and respond to it.

On the Bone, add the script in Code for communicating via the UART (launchPad.js) to a file called launch-
Pad.js and run it.

Listing 4.51: Code for communicating via the UART (launchPad.js)
1 #!/usr/bin/env node
2 // Need to add exports.serialParsers = m.module.parsers;
3 // to /usr/local/lib/node_modules/bonescript/serial.js
4 var b = require('bonescript');
5

(continues on next page)

4.1. BeagleBone Cookbook 281

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

6 var port = '/dev/ttyO1'; // <1>
7 var options = {
8 baudrate: 9600, // <2>
9 parser: b.serialParsers.readline("\n") // <3>

10 };
11

12 b.serialOpen(port, options, onSerial); // <4>
13

14 function onSerial(x) { // <5>
15 console.log(x.event);
16 if (x.err) {
17 console.log('***ERROR*** ' + JSON.stringify(x));
18 }
19 if (x.event == 'open') {
20 console.log('***OPENED***');
21 setInterval(sendCommand, 1000); // <6>
22 }
23 if (x.event == 'data') {
24 console.log(String(x.data));
25 }
26 }
27

28 var command = ['r', 'g']; // <7>
29 var commIdx = 1;
30

31 function sendCommand() {
32 // console.log('Command: ' + command[commIdx]);
33 b.serialWrite(port, command[commIdx++]); // <8>
34 if(commIdx >= command.length) { // <9>
35 commIdx = 0;
36 }
37 }

launchPad.js

1. Select which serial port to use. Table of UART outputs sows what’s available. We’ve wired P9_24
and P9_26, so we are using serial port /dev/ttyO1. (Note that’s the letter O and not the number
zero.)

2. Set the baudrate to 9600, which matches the setting on the LaunchPad.

3. Read one line at a time up to the newline character (n).

4. Open the serial port and call onSerial() whenever there is data available.

5. Determine what event has happened on the serial port and respond to it.

6. If the serial port has been opened, start calling sendCommand() every 1000 ms.

7. These are the two commands to send.

8. Write the character out to the serial port and to the LaunchPad.

9. Move to the next command.

Discussion When you run the script in Code for communicating via the UART (launchPad.js), the Bone
opens up the serial port and every second sends a new command, either r or g. The LaunchPad waits for
the command and, when it arrives, responds by toggling the corresponding LED.

282 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.66: Table of UART outputs

4.1.7 The Kernel

The kernel is the heart of the Linux operating system. It’s the software that takes the low-level requests,
such as reading or writing files, or reading and writing general-purpose input/output (GPIO) pins, and
maps them to the hardware. When you install a new version of the OS (Verifying You Have the Latest
Version of the OS on Your Bone), you get a certain version of the kernel.

You usually won’t need to mess with the kernel, but sometimes you might want to try something new
that requires a different kernel. This chapter shows how to switch kernels. The nice thing is you can
have multiple kernels on your system at the same time and select from among them which to boot up.

Note: We assume here that you are logged on to your Bone as root and superuser privileges. You also
need to be logged in to your Linux host computer as a nonsuperuser.

Updating the Kernel

Problem You have an out-of-date kernel and want to want to make it current.

Solution Use the following command to determine which kernel you are running:

bone$ uname -a
Linux beaglebone 3.8.13-bone67 #1 SMP Wed Sep 24 21:30:03 UTC 2014 armv7l
GNU/Linux

The 3.8.13-bone67 string is the kernel version.

To update to the current kernel, ensure that your Bone is on the Internet (Sharing the Host’s Internet
Connection over USB or Establishing an Ethernet-Based Internet Connection) and then run the following
commands:

4.1. BeagleBone Cookbook 283

BeagleBoard Docs, Release 0.0.9

bone$ apt-cache pkgnames | grep linux-image | sort | less
...
linux-image-3.15.8-armv7-x5
linux-image-3.15.8-bone5
linux-image-3.15.8-bone6
...
linux-image-3.16.0-rc7-bone1
...
linux-image-3.8.13-bone60
linux-image-3.8.13-bone61
linux-image-3.8.13-bone62
bone$ sudo apt install linux-image-3.14.23-ti-r35
bone$ sudo reboot
bone$ uname -a
Linux beaglebone 3.14.23-ti-r35 #1 SMP PREEMPT Wed Nov 19 21:11:08 UTC 2014 armv7l
GNU/Linux

The first command lists the versions of the kernel that are available. The second command installs one.
After you have rebooted, the new kernel will be running.

If the current kernel is doing its job adequately, you probably don’t need to update, but sometimes a new
software package requires a more up-to-date kernel. Fortunately, precompiled kernels are available and
ready to download.

Building and Installing Kernel Modules

Problem You need to use a peripheral for which there currently is no driver, or you need to improve
the performance of an interface previously handled in user space.

Solution The solution is to run in kernel space by building a kernel module. There are entire books on
writing Linux Device Drivers. This recipe assumes that the driver has already been written and shows
how to compile and install it. After you’ve followed the steps for this simple module, you will be able to
apply them to any other module.

For our example module, add the code in Simple Kernel Module (hello.c) to a file called hello.c.

Listing 4.52: Simple Kernel Module (hello.c)
1 #include <linux/module.h> /* Needed by all modules */
2 #include <linux/kernel.h> /* Needed for KERN_INFO */
3 #include <linux/init.h> /* Needed for the macros */
4

5 static int __init hello_start(void)
6 {
7 printk(KERN_INFO "Loading hello module...\n");
8 printk(KERN_INFO "Hello, World!\n");
9 return 0;

10 }
11

12 static void __exit hello_end(void)
13 {
14 printk(KERN_INFO "Goodbye Boris\n");
15 }
16

17 module_init(hello_start);
18 module_exit(hello_end);
19

(continues on next page)

284 Chapter 4. Books

http://bit.ly/1Fb0usf
http://bit.ly/1Fb0usf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

20 MODULE_AUTHOR("Boris Houndleroy");
21 MODULE_DESCRIPTION("Hello World Example");
22 MODULE_LICENSE("GPL");

hello.c

When compiling on the Bone, all you need to do is load the Kernel Headers for the version of the kernel
you’re running:

bone$ sudo apt install linux-headers-``uname -r``

Note: The quotes around uname -r are backtick characters. On a United States keyboard, the backtick
key is to the left of the 1 key.

This took a little more than three minutes on my Bone. The uname -r part of the command looks up
what version of the kernel you are running and loads the headers for it.

Next, add the code in Simple Kernel Module (Makefile) to a file called Makefile.

Listing 4.53: Simple Kernel Module (Makefile)
1 obj-m := hello.o
2 KDIR := /lib/modules/$(shell uname -r)/build
3

4 all:
5 <TAB>make -C $(KDIR) M=$$PWD
6

7 clean:
8 <TAB>rm hello.mod.c hello.o modules.order hello.mod.o Module.symvers

Makefile.display

Note: Replace the two instances of <TAB> with a tab character (the key left of the Q key on a United
States keyboard). The tab characters are very important to makefiles and must appear as shown.

Now, compile the kernel module by using the make command:

bone$ make
make -C /lib/modules/3.8.13-bone67/build \

SUBDIRS=/root/cookbook-atlas/code/hello modules
make[1]: Entering directory `/usr/src/linux-headers-3.8.13-bone67'
CC [M] /root/cookbook-atlas/code/hello/hello.o
Building modules, stage 2.
MODPOST 1 modules
CC /root/cookbook-atlas/code/hello/hello.mod.o
LD [M] /root/cookbook-atlas/code/hello/hello.ko
make[1]: Leaving directory `/usr/src/linux-headers-3.8.13-bone67'
bone$ ls
Makefile hello.c hello.mod.c hello.o
Module.symvers hello.ko hello.mod.o modules.order

Notice that several files have been created. hello.ko is the one you want. Try a couple of commands
with it:

bone$ modinfo hello.ko
filename: /root/hello/hello.ko

(continues on next page)

4.1. BeagleBone Cookbook 285

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

srcversion: 87C6AEED7791B4B90C3B50C
depends:
vermagic: 3.8.13-bone67 SMP mod_unload modversions ARMv7 thumb2 p2v8
bone$ sudo insmod hello.ko
bone$ dmesg | tail -4
[419313.320052] bone-iio-helper helper.15: ready
[419313.322776] bone-capemgr bone_capemgr.9: slot #8: Applied #1 overlays.
[491540.999431] Loading hello module...
[491540.999476] Hello world

The first command displays information about the module. The insmod command inserts the module
into the running kernel. If all goes well, nothing is displayed, but the module does print something in
the kernel log. The dmesg command displays the messages in the log, and the tail -4 command shows
the last four messages. The last two messages are from the module. It worked!

Controlling LEDs by Using SYSFS Entries

Problem You want to control the onboard LEDs from the command line.

Solution On Linux, everything is a file that is, you can access all the inputs and outputs, the LEDs, and
so on by opening the right file and reading or writing to it. For example, try the following:

bone$ cd /sys/class/leds/
bone$ ls
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

What you are seeing are four directories, one for each onboard LED. Now try this:

bone$ cd beaglebone\:green\:usr0
bone$ ls
brightness device max_brightness power subsystem trigger uevent
bone$ cat trigger
none nand-disk mmc0 mmc1 timer oneshot [heartbeat]

backlight gpio cpu0 default-on transient

The first command changes into the directory for LED usr0, which is the LED closest to the edge of
the board. The [heartbeat] indicates that the default trigger (behavior) for the LED is to blink in the
heartbeat pattern. Look at your LED. Is it blinking in a heartbeat pattern?

Then try the following:

bone$ echo none > trigger
bone$ cat trigger
[none] nand-disk mmc0 mmc1 timer oneshot heartbeat

backlight gpio cpu0 default-on transient

This instructs the LED to use none for a trigger. Look again. It should be no longer blinking.

Now, try turning it on and off:

bone$ echo 1 > brightness
bone$ echo 0 > brightness

The LED should be turning on and off with the commands.

286 Chapter 4. Books

http://bit.ly/1AjhWUW

BeagleBoard Docs, Release 0.0.9

Controlling GPIOs by Using SYSFS Entries

Problem You want to control a GPIO pin from the command line.

Solution Controlling LEDs by Using SYSFS Entries introduces the sysfs. This recipe shows how to read
and write a GPIO pin.

Reading a GPIO Pin via sysfs

Suppose that you want to read the state of the P9_42 GPIO pin. (Reading the Status of a Pushbutton or
Magnetic Switch (Passive On/Off Sensor) shows how to wire a switch to P9_42.) First, you need to map
the P9 header location to GPIO number using Mapping P9_42 header position to GPIO 7, which shows
that P9_42 maps to GPIO 7.

Fig. 4.67: Mapping P9_42 header position to GPIO 7

Next, change to the GPIO sysfs directory:

bone$ cd /sys/class/gpio/
bone$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

The ls command shows all the GPIO pins that have be exported. In this case, none have, so you see only
the four GPIO controllers. Export using the export command:

bone$ echo 7 > export
bone$ ls
export gpio7 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Now you can see the gpio7 directory. Change into the gpio7 directory and look around:

4.1. BeagleBone Cookbook 287

BeagleBoard Docs, Release 0.0.9

bone$ cd gpio7
bone$ ls
active_low direction edge power subsystem uevent value
bone$ cat direction
in
bone$ cat value
0

Notice that the pin is already configured to be an input pin. (If it wasn’t already configured that way, use
echo in > direction to configure it.) You can also see that its current value is 0—that is, it isn’t pressed.
Try pressing and holding it and running again:

bone$ cat value
1

The 1 informs you that the switch is pressed. When you are done with GPIO 7, you can always unexport
it:

bone$ cd ..
bone$ echo 7 > unexport
bone$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Writing a GPIO Pin via sysfs

Now, suppose that you want to control an external LED. Toggling an External LED shows how to wire
an LED to P9_14. Mapping P9_42 header position to GPIO 7 shows P9_14 is GPIO 50. Following the
approach in Controlling GPIOs by Using SYSFS Entries, enable GPIO 50 and make it an output:

bone$ cd /sys/class/gpio/
bone$ echo 50 > export
bone$ ls
gpio50 gpiochip0 gpiochip32 gpiochip64 gpiochip96
bone$ cd gpio50
bone$ ls
active_low direction edge power subsystem uevent value
bone$ cat direction
in

By default, P9_14 is set as an input. Switch it to an output and turn it on:

bone$ echo out > direction
bone$ echo 1 > value
bone$ echo 0 > value

The LED turns on when a 1 is written to value and turns off when a 0 is written.

Compiling the Kernel

Problem You need to download, patch, and compile the kernel from its source code.

Solution This is easier than it sounds, thanks to some very powerful scripts.

288 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Warning: Be sure to run this recipe on your host computer. The Bone has enough computational
power to compile a module or two, but compiling the entire kernel takes lots of time and resourses.

Downloading and Compiling the Kernel

To download and compile the kernel, follow these steps:

host$ git clone https://github.com/RobertCNelson/bb-kernel.git # <1>
host$ cd bb-kernel
host$ git tag # <2>
host$ git checkout 3.8.13-bone60 -b v3.8.13-bone60 # <3>
host$./build_kernel.sh # <4>

1. The first command clones a repository with the tools to build the kernel for the Bone.

2. This command lists all the different versions of the kernel that you can build. You’ll need to
pick one of these. How do you know which one to pick? A good first step is to choose the
one you are currently running. uname -a will reveal which one that is. When you are able to
reproduce the current kernel, go to Linux Kernel Newbies to see what features are available in
other kernels. LinuxChanges shows the features in the newest kernel and LinuxVersions links to
features of pervious kernels.

3. When you know which kernel to try, use git checkout to check it out. This command checks out at
tag 3.8.13-bone60 and creates a new branch, v3.8.13-bone60.

4. build_kernel is the master builder. If needed, it will download the cross compilers needed to compile
the kernel (linaro is the current cross compiler). If there is a kernel at ~/linux-dev, it will use it;
otherwise, it will download a copy to bb-kernel/ignore/linux-src. It will then patch the kernel
so that it will run on the Bone.

After the kernel is patched, you’ll see a screen similar to Kernel configuration menu, on which you can
configure the kernel.

You can use the arrow keys to navigate. No changes need to be made, so you can just press the right
arrow and Enter to start the kernel compiling. The entire process took about 25 minutes on my 8-core
host.

The bb-kernel/KERNEL directory contains the source code for the kernel. The bb-kernel/deploy direc-
tory contains the compiled kernel and the files needed to run it.

Installing the Kernel on the Bone

To copy the new kernel and all its files to the microSD card, you need to halt the Bone, and then pull the
microSD card out and put it in an microSD card reader on your host computer. Run Disk (see Verifying
You Have the Latest Version of the OS on Your Bone) to learn where the microSD card appears on your
host (mine appears in /dev/sdb). Then open the bb-kernel/system.sh file and find this line near the
end:

MMC=/dev/sde

Change that line to look like this (where /dev/sdb is the path to your device):

MMC=/dev/sdb

Now, while in the bb-kernel directory, run the following command:

4.1. BeagleBone Cookbook 289

http://kernelnewbies.org/
http://bit.ly/1AjiL00
http://bit.ly/1MrIHx3
http://www.linaro.org/

BeagleBoard Docs, Release 0.0.9

Fig. 4.68: Kernel configuration menu

290 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

host$ tools/install_kernel.sh
[sudo] password for yoder:

I see...
fdisk -l:
Disk /dev/sda: 160.0 GB, 160041885696 bytes
Disk /dev/sdb: 3951 MB, 3951034368 bytes
Disk /dev/sdc: 100 MB, 100663296 bytes

lsblk:
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 149.1G 0 disk

sda1 8:1 0 141.1G 0 part /
sda2 8:2 0 1K 0 part
sda5 8:5 0 8G 0 part [SWAP]

sdb 8:16 1 3.7G 0 disk
sdb1 8:17 1 16M 0 part
sdb2 8:18 1 3.7G 0 part

sdc 8:32 1 96M 0 disk

Are you 100% sure, on selecting [/dev/sdb] (y/n)? y

The script lists the partitions it sees and asks if you have the correct one. If you are sure, press Y, and the
script will uncompress and copy the files to the correct locations on your card. When this is finished, eject
your card, plug it into the Bone, and boot it up. Run uname -a, and you will see that you are running
your compiled kernel.

Using the Installed Cross Compiler

Problem You have followed the instructions in Compiling the Kernel and want to use the cross compiler
it has downloaded.

Tip: You can cross-compile without installing the entire kernel source by running the following:

host$ sudo apt install gcc-arm-linux-gnueabihf

Then skip down to Setting Up Variables.

Solution Compiling the Kernel installs a cross compiler, but you need to set up a couple of things so that
it can be found. Compiling the Kernel installed the kernel and other tools in a directory called bb-kernel.
Run the following commands to find the path to the cross compiler:

host$ cd bb-kernel/dl
host$ ls
gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux
gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux.tar.xz

Here, the path to the cross compiler contains the version number of the compiler. Yours might be different
from mine. cd into it:

host$ cd gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux
host$ ls
20130415-gcc-linaro-arm-linux-gnueabihf bin libexec
arm-linux-gnueabihf lib share

4.1. BeagleBone Cookbook 291

BeagleBoard Docs, Release 0.0.9

At this point, we are interested in what’s in bin:

host$ cd bin
host$ ls
arm-linux-gnueabihf-addr2line arm-linux-gnueabihf-gfortran
arm-linux-gnueabihf-ar arm-linux-gnueabihf-gprof
arm-linux-gnueabihf-as arm-linux-gnueabihf-ld
arm-linux-gnueabihf-c+* arm-linux-gnueabihf-ld.bfd
arm-linux-gnueabihf-c++filt arm-linux-gnueabihf-ldd
arm-linux-gnueabihf-cpp arm-linux-gnueabihf-ld.gold
arm-linux-gnueabihf-ct-ng.config arm-linux-gnueabihf-nm
arm-linux-gnueabihf-elfedit arm-linux-gnueabihf-objcopy
arm-linux-gnueabihf-g+* arm-linux-gnueabihf-objdump
arm-linux-gnueabihf-gcc arm-linux-gnueabihf-pkg-config
arm-linux-gnueabihf-gcc-4.7.3 arm-linux-gnueabihf-pkg-config-real
arm-linux-gnueabihf-gcc-ar arm-linux-gnueabihf-ranlib
arm-linux-gnueabihf-gcc-nm arm-linux-gnueabihf-readelf
arm-linux-gnueabihf-gcc-ranlib arm-linux-gnueabihf-size
arm-linux-gnueabihf-gcov arm-linux-gnueabihf-strings
arm-linux-gnueabihf-gdb arm-linux-gnueabihf-strip

What you see are all the cross-development tools. You need to add this directory to the $PATH the shell
uses to find the commands it runs:

host$ pwd
/home/yoder/BeagleBoard/bb-kernel/dl/\

gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux/bin

host$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:\
/usr/games:/usr/local/games

The first command displays the path to the directory where the cross-development tools are located.
The second shows which directories are searched to find commands to be run. Currently, the cross-
development tools are not in the $PATH. Let’s add it:

host$ export PATH=`pwd`:$PATH
host$ echo $PATH
/home/yoder/BeagleBoard/bb-kernel/dl/\

gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux/bin:\
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:\
/usr/games:/usr/local/games

Note: Those are backtick characters (left of the “1” key on your keyboard) around pwd.

The second line shows the $PATH now contains the directory with the cross-development tools.

Setting Up Variables

Now, set up a couple of variables to know which compiler you are using:

host$ export ARCH=arm
host$ export CROSS_COMPILE=arm-linux-gnueabihf-

These lines set up the standard environmental variables so that you can determine which cross-
development tools to use. Test the cross compiler by adding Simple helloWorld.c to test cross compiling
(helloWorld.c) to a file named _helloWorld.c_.

292 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Listing 4.54: Simple helloWorld.c to test cross compiling (hel-
loWorld.c)

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 printf("Hello, World! \n");
5 }

helloWorld.c

You can then cross-compile by using the following commands:

host$ ${ CROSS_COMPILE} gcc helloWorld.c
host$ file a.out
a.out: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.31,
BuildID[sha1]=0x10182364352b9f3cb15d1aa61395aeede11a52ad, not stripped

The file command shows that a.out was compiled for an ARM processor.

Applying Patches

Problem You have a patch file that you need to apply to the kernel.

Solution Simple kernel patch file (hello.patch) shows a patch file that you can use on the kernel.

Listing 4.55: Simple kernel patch file (hello.patch)
1 From eaf4f7ea7d540bc8bb57283a8f68321ddb4401f4 Mon Sep 17 00:00:00 2001
2 From: Jason Kridner <jdk@ti.com>
3 Date: Tue, 12 Feb 2013 02:18:03 +0000
4 Subject: [PATCH] hello: example kernel modules
5

6 ---
7 hello/Makefile | 7 +++++++
8 hello/hello.c | 18 ++++++++++++++++++
9 2 files changed, 25 insertions(+), 0 deletions(-)

10 create mode 100644 hello/Makefile
11 create mode 100644 hello/hello.c
12

13 diff --git a/hello/Makefile b/hello/Makefile
14 new file mode 100644
15 index 0000000..4b23da7
16 --- /dev/null
17 +++ b/hello/Makefile
18 @@ -0,0 +1,7 @@
19 +obj-m := hello.o
20 +
21 +PWD := $(shell pwd)
22 +KDIR := ${PWD}/..
23 +
24 +default:
25 + make -C $(KDIR) SUBDIRS=$(PWD) modules
26 diff --git a/hello/hello.c b/hello/hello.c
27 new file mode 100644
28 index 0000000..157d490

(continues on next page)

4.1. BeagleBone Cookbook 293

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

29 --- /dev/null
30 +++ b/hello/hello.c
31 @@ -0,0 +1,22 @@
32 +#include <linux/module.h> /* Needed by all modules */
33 +#include <linux/kernel.h> /* Needed for KERN_INFO */
34 +#include <linux/init.h> /* Needed for the macros */
35 +
36 +static int __init hello_start(void)
37 +{
38 + printk(KERN_INFO "Loading hello module...\n");
39 + printk(KERN_INFO "Hello, World!\n");
40 + return 0;
41 +}
42 +
43 +static void __exit hello_end(void)
44 +{
45 + printk(KERN_INFO "Goodbye Boris\n");
46 +}
47 +
48 +module_init(hello_start);
49 +module_exit(hello_end);
50 +
51 +MODULE_AUTHOR("Boris Houndleroy");
52 +MODULE_DESCRIPTION("Hello World Example");
53 +MODULE_LICENSE("GPL");

hello.patch

Here’s how to use it:

• Install the kernel sources (Compiling the Kernel).

• Change to the kernel directory (+cd bb-kernel/KERNEL+).

• Add Simple kernel patch file (hello.patch) to a file named hello.patch in the bb-kernel/KERNEL
directory.

• Run the following commands:

host$ cd bb-kernel/KERNEL
host$ patch -p1 < hello.patch
patching file hello/Makefile
patching file hello/hello.c

The output of the patch command apprises you of what it’s doing. Look in the hello directory to see
what was created:

host$ cd hello
host$ ls
hello.c Makefile

Building and Installing Kernel Modules shows how to build and install a module, and Creating Your Own
Patch File shows how to create your own patch file.

Creating Your Own Patch File

Problem You made a few changes to the kernel, and you want to share them with your friends.

294 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Solution Create a patch file that contains just the changes you have made. Before making your changes,
check out a new branch:

host$ cd bb-kernel/KERNEL
host$ git status
On branch master
nothing to commit (working directory clean)

Good, so far no changes have been made. Now, create a new branch:

host$ git checkout -b hello1
host$ git status
On branch hello1
nothing to commit (working directory clean)

You’ve created a new branch called hello1 and checked it out. Now, make whatever changes to the
kernel you want. I did some work with a simple character driver that we can use as an example:

host$ cd bb-kernel/KERNEL/drivers/char/
host$ git status
On branch hello1
Changes not staged for commit:
(use "git add file..." to update what will be committed)
(use "git checkout -- file..." to discard changes in working directory)
#
modified: Kconfig
modified: Makefile
#
Untracked files:
(use "git add file..." to include in what will be committed)
#
examples/
no changes added to commit (use "git add" and/or "git commit -a")

Add the files that were created and commit them:

host$ git add Kconfig Makefile examples
host$ git status
On branch hello1
Changes to be committed:
(use "git reset HEAD file..." to unstage)
#
modified: Kconfig
modified: Makefile
new file: examples/Makefile
new file: examples/hello1.c
#
host$ git commit -m "Files for hello1 kernel module"
[hello1 99346d5] Files for hello1 kernel module
4 files changed, 33 insertions(+)
create mode 100644 drivers/char/examples/Makefile
create mode 100644 drivers/char/examples/hello1.c

Finally, create the patch file:

host$ git format-patch master --stdout > hello1.patch

4.1. BeagleBone Cookbook 295

BeagleBoard Docs, Release 0.0.9

4.1.8 Real-Time I/O

Sometimes, when BeagleBone Black interacts with the physical world, it needs to respond in a timely
manner. For example, your robot has just detected that one of the driving motors needs to turn a bit
faster. Systems that can respond quickly to a real event are known as real-time systems. There are two
broad categories of real-time systems: soft and hard.

In a soft real-time system, the real-time requirements should be met most of the time, where most
depends on the system. A video playback system is a good example. The goal might be to display 60
frames per second, but it doesn’t matter much if you miss a frame now and then. In a 100 percent hard
real-time system, you can never fail to respond in time. Think of an airbag deployment system on a
car. You can’t even be 50 ms late.

Systems running Linux generally can’t do 100 percent hard real-time processing, because Linux gets
in the way. However, the Bone has an ARM processor running Linux and two additional 32-bit pro-
grammable real-time units (PRUs Ti AM33XX PRUSSv2) available to do real-time processing. Although
the PRUs can achieve 100 percent hard real-time, they take some effort to use.

This chapter shows several ways to do real-time input/output (I/O), starting with the effortless, yet
slower JavaScript and moving up with increasing speed (and effort) to using the PRUs.

Note: In this chapter, as in the others, we assume that you are logged in as debian (as indicated by the
bone$ prompt). This gives you quick access to the general-purpose input/output (GPIO) ports but you
may have to use sudo some times.

I/O with JavaScript

Problem You want to read an input pin and write it to the output as quickly as possible with JavaScript.

Solution Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor) shows how to
read a pushbutton switch and Toggling an External LED controls an external LED. This recipe combines
the two to read the switch and turn on the LED in response to it. To make this recipe, you will need:

• Breadboard and jumper wires

• Pushbutton switch

• 220R resistor

• LED

Wire up the pushbutton and LED as shown in Diagram for wiring a pushbutton and LED with the LED
attached to P9_14.

The code in Monitoring a pushbutton (pushLED.js) reads GPIO port P9_42, which is attached to the
pushbutton, and turns on the LED attached to P9_12 when the button is pushed.

Listing 4.56: Monitoring a pushbutton (pushLED.py)
1 #!/usr/bin/env python
2 # //
3 # // pushLED.py
4 # // Blinks an LED attached to P9_12 when the button at P9_42 is pressed
5 # // Wiring:
6 # // Setup:
7 # // See:
8 # //
9 import time

10 import os
(continues on next page)

296 Chapter 4. Books

http://bit.ly/1EzTPZv

BeagleBoard Docs, Release 0.0.9

Fig. 4.69: Diagram for wiring a pushbutton and LED with the LED attached to P9_14

(continued from previous page)

11

12 ms = 50 # Read time in ms
13

14 LED="50" # Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1, line 18␣
→˓maps to 50

15 button="7" # P9_42 mapps to 7
16

17 GPIOPATH="/sys/class/gpio/"
18

19 # Make sure LED is exported
20 if (not os.path.exists(GPIOPATH+"gpio"+LED)):
21 f = open(GPIOPATH+"export", "w")
22 f.write(LED)
23 f.close()
24

25 # Make it an output pin
26 f = open(GPIOPATH+"gpio"+LED+"/direction", "w")
27 f.write("out")
28 f.close()
29

30 # Make sure button is exported
31 if (not os.path.exists(GPIOPATH+"gpio"+button)):
32 f = open(GPIOPATH+"export", "w")
33 f.write(button)
34 f.close()
35

36 # Make it an output pin
37 f = open(GPIOPATH+"gpio"+button+"/direction", "w")
38 f.write("in")
39 f.close()

(continues on next page)

4.1. BeagleBone Cookbook 297

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

40

41 # Read every ms
42 fin = open(GPIOPATH+"gpio"+button+"/value", "r")
43 fout = open(GPIOPATH+"gpio"+LED+"/value", "w")
44

45 while True:
46 fin.seek(0)
47 fout.seek(0)
48 fout.write(fin.read())
49 time.sleep(ms/1000)

pushLED.py

Listing 4.57: Monitoring a pushbutton (pushLED.js)
1 #!/usr/bin/env node
2 //
3 // pushLED.js
4 // Blinks an LED attached to P9_12 when the button at P9_42 is pressed
5 // Wiring:
6 // Setup:
7 // See:
8 //
9 const fs = require("fs");

10

11 const ms = 500 // Read time in ms
12

13 const LED="50"; // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1,␣
→˓line 18 maps to 50

14 const button="7"; // P9_42 mapps to 7
15

16 GPIOPATH="/sys/class/gpio/";
17

18 // Make sure LED is exported
19 if(!fs.existsSync(GPIOPATH+"gpio"+LED)) {
20 fs.writeFileSync(GPIOPATH+"export", LED);
21 }
22 // Make it an output pin
23 fs.writeFileSync(GPIOPATH+"gpio"+LED+"/direction", "out");
24

25 // Make sure button is exported
26 if(!fs.existsSync(GPIOPATH+"gpio"+button)) {
27 fs.writeFileSync(GPIOPATH+"export", button);
28 }
29 // Make it an input pin
30 fs.writeFileSync(GPIOPATH+"gpio"+button+"/direction", "in");
31

32 // Read every ms
33 setInterval(flashLED, ms);
34

35 function flashLED() {
36 var data = fs.readFileSync(GPIOPATH+"gpio"+button+"/value").slice(0, -1);
37 console.log('data = ' + data);
38 fs.writeFileSync(GPIOPATH+"gpio"+LED+"/value", data);
39 }

pushLED.js

298 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Add the code to a file named pushLED.js and run it by using the following commands:

bone$ chmod *x pushLED.js
bone$./pushLED.js
data = 0
data = 0
data = 1
data = 1
^C

Press ^C (Ctrl-C) to stop the code.

I/O with C

Problem You want to use the C language to process inputs in real time, or Python/JavaScript isn’t fast
enough.

Solution I/O with JavaScript shows how to control an LED with a pushbutton using JavaScript.
This recipe accomplishes the same thing using C. It does it in the same way, opening the correct
/sys/class/gpio files and reading an writing them.

Wire up the pushbutton and LED as shown in Diagram for wiring a pushbutton and LED with the LED
attached to P9_14. Then add the code in Code for reading a switch and blinking an LED (pushLED.c) to a
file named pushLED.c.

Listing 4.58: Code for reading a switch and blinking an LED (push-
LED.c)

1 //
2 // blinkLED.c
3 // Blinks the P9_14 pin based on the P9_42 pin
4 // Wiring:
5 // Setup:
6 // See:
7 //
8 #include <stdio.h>
9 #include <string.h>

10 #include <unistd.h>
11 #define MAXSTR 100
12

13 int main() {
14 FILE *fpbutton, *fpLED;
15 char LED[] = "50"; // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip␣

→˓1, line 18 maps to 50
16 char button[] = "7"; // Look up P9.42 using gpioinfo | grep -e chip -e P9.42. chip␣

→˓0, line 7 maps to 7
17 char GPIOPATH[] = "/sys/class/gpio";
18 char path[MAXSTR] = "";
19

20 // Make sure LED is exported
21 snprintf(path, MAXSTR, "%s%s%s", GPIOPATH, "/gpio", LED);
22 if (!access(path, F_OK) == 0) {
23 snprintf(path, MAXSTR, "%s%s", GPIOPATH, "/export");
24 fpLED = fopen(path, "w");
25 fprintf(fpLED, "%s", LED);
26 fclose(fpLED);
27 }

(continues on next page)

4.1. BeagleBone Cookbook 299

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

28

29 // Make it an output LED
30 snprintf(path, MAXSTR, "%s%s%s%s", GPIOPATH, "/gpio", LED, "/direction");
31 fpLED = fopen(path, "w");
32 fprintf(fpLED, "out");
33 fclose(fpLED);
34

35 // Make sure bbuttonutton is exported
36 snprintf(path, MAXSTR, "%s%s%s", GPIOPATH, "/gpio", button);
37 if (!access(path, F_OK) == 0) {
38 snprintf(path, MAXSTR, "%s%s", GPIOPATH, "/export");
39 fpbutton = fopen(path, "w");
40 fprintf(fpbutton, "%s", button);
41 fclose(fpbutton);
42 }
43

44 // Make it an input button
45 snprintf(path, MAXSTR, "%s%s%s%s", GPIOPATH, "/gpio", button, "/direction");
46 fpbutton = fopen(path, "w");
47 fprintf(fpbutton, "in");
48 fclose(fpbutton);
49

50 // I don't know why I can open the LED outside the loop and use fseek before
51 // each read, but I can't do the same for the button. It appears it needs
52 // to be opened every time.
53 snprintf(path, MAXSTR, "%s%s%s%s", GPIOPATH, "/gpio", LED, "/value");
54 fpLED = fopen(path, "w");
55

56 char state = '0';
57

58 while (1) {
59 snprintf(path, MAXSTR, "%s%s%s%s", GPIOPATH, "/gpio", button, "/value");
60 fpbutton = fopen(path, "r");
61 fseek(fpLED, 0L, SEEK_SET);
62 fscanf(fpbutton, "%c", &state);
63 printf("state: %c\n", state);
64 fprintf(fpLED, "%c", state);
65 fclose(fpbutton);
66 usleep(250000); // sleep time in microseconds
67 }
68 }

pushLED.c

Compile and run the code:

bone$ gcc -o pushLED pushLED.c
bone$./pushLED
state: 1
state: 1
state: 0
state: 0
state: 0
state: 1
^C

The code responds quickly to the pushbutton. If you need more speed, comment-out the printf() and the
sleep().

300 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

I/O with devmem2

Problem Your C code isn’t responding fast enough to the input signal. You want to read the GPIO
registers directly.

Solution The solution is to use a simple utility called devmem2, with which you can read and write
registers from the command line.

Warning: This solution is much more involved than the previous ones. You need to understand
binary and hex numbers and be able to read the AM335x Technical Reference Manual.

First, download and install devmem2:

bone$ wget http://free-electrons.com/pub/mirror/devmem2.c
bone$ gcc -o devmem2 devmem2.c
bone$ sudo mv devmem2 /usr/bin

This solution will read a pushbutton attached to P9_42 and flash an LED attached to P9_13. Note that
this is a change from the previous solutions that makes the code used here much simpler. Wire up your
Bone as shown in Diagram for wiring a pushbutton and LED with the LED attached to P9_13.

Fig. 4.70: Diagram for wiring a pushbutton and LED with the LED attached to P9_13

Now, flash the LED attached to P9_13 using the Linux sysfs interface (Controlling GPIOs by Using SYSFS
Entries). To do this, first look up which GPIO number P9_13 is attached to by referring to Mapping from
header pin to internal GPIO number. Finding P9_13 at GPIO 31, export GPIO 31 and make it an output:

bone$ cd cd /sys/class/gpio/
bone$ echo 31 > export
bone$ cd gpio31
bone$ echo out > direction
bone$ echo 1 > value
bone$ echo 0 > value

4.1. BeagleBone Cookbook 301

http://bit.ly/1B4Cm45

BeagleBoard Docs, Release 0.0.9

The LED will turn on when 1 is echoed into value and off when 0 is echoed.

Now that you know the LED is working, look up its memory address. This is where things get very
detailed. First, download the AM335x Technical Reference Manual. Look up GPIO0 in the Memory Map
chapter (sensors). Table 2-2 indicates that GPIO0 starts at address 0x44E0_7000. Then go to Section
25.4.1, “GPIO Registers.” This shows that GPIO_DATAIN has an offset of 0x138, GPIO_CLEARDATAOUT
has an offset of 0x190, and GPIO_SETDATAOUT has an offset of 0x194.

This means you read from address 0x44E0_7000 * 0x138 = 0x44E0_7138 to see the status of the LED:

bone$ sudo devmem2 0x44E07138
/dev/mem opened.
Memory mapped at address 0xb6f8e000.
Value at address 0x44E07138 (0xb6f8e138): 0xC000C404

The returned value 0xC000C404 (1100 0000 0000 0000 1100 0100 0000 0100 in binary) has bit 31 set
to 1, which means the LED is on. Turn the LED off by writing 0x80000000 (1000 0000 0000 0000 0000
0000 0000 0000 binary) to the GPIO_CLEARDATA register at 0x44E0_7000 * 0x190 = 0x44E0_7190:

bone$ sudo devmem2 0x44E07190 w 0x80000000
/dev/mem opened.
Memory mapped at address 0xb6fd7000.
Value at address 0x44E07190 (0xb6fd7190): 0x80000000
Written 0x80000000; readback 0x0

The LED is now off.

You read the pushbutton switch in a similar way. Mapping from header pin to internal GPIO number says
P9_42 is GPIO 7, which means bit 7 is the state of P9_42. The devmem2 in this example reads 0x0, which
means all bits are 0, including GPIO 7. Section 25.4.1 of the Technical Reference Manual instructs you
to use offset 0x13C to read GPIO_DATAOUT. Push the pushbutton and run devmem2:

bone$ sudo devmem2 0x44e07138
/dev/mem opened.
Memory mapped at address 0xb6fe2000.
Value at address 0x44E07138 (0xb6fe2138): 0x4000C484

Here, bit 7 is set in 0x4000C484, showing the button is pushed.

This is much more tedious than the previous methods, but it’s what’s necessary if you need to minimize
the time to read an input. I/O with C and mmap() shows how to read and write these addresses from C.

I/O with C and mmap()

Problem Your C code isn’t responding fast enough to the input signal.

Solution In smaller processors that aren’t running an operating system, you can read and write a
given memory address directly from C. With Linux running on Bone, many of the memory locations are
hardware protected, so you can’t accidentally access them directly.

This recipe shows how to use mmap() (memory map) to map the GPIO registers to an array in C. Then
all you need t o do is access the array to read and write the registers.

Warning: This solution is much more involved than the previous ones. You need to understand
binary and hex numbers and be able to read the AM335x Technical Reference Manual.

This solution will read a pushbutton attached to P9_42 and flash an LED attached to P9_13. Note that
this is a change from the previous solutions that makes the code used here much simpler.

302 Chapter 4. Books

http://bit.ly/1B4Cm45

BeagleBoard Docs, Release 0.0.9

Tip: See I/O with devmem2 for details on mapping the GPIO numbers to memory addresses.

Add the code in Memory address definitions (pushLEDmmap.h) to a file named pushLEDmmap.h.

Listing 4.59: Memory address definitions (pushLEDmmap.h)
1 // From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
2 // -through-dev-mem
3 // user contributions licensed under cc by-sa 3.0 with attribution required
4 // http://creativecommons.org/licenses/by-sa/3.0/
5 // http://blog.stackoverflow.com/2009/06/attribution-required/
6 // Author: madscientist159 (http://stackoverflow.com/users/3000377/madscientist159)
7

8 #ifndef _BEAGLEBONE_GPIO_H_
9 #define _BEAGLEBONE_GPIO_H_

10

11 #define GPIO0_START_ADDR 0x44e07000
12 #define GPIO0_END_ADDR 0x44e08000
13 #define GPIO0_SIZE (GPIO0_END_ADDR - GPIO0_START_ADDR)
14

15 #define GPIO1_START_ADDR 0x4804C000
16 #define GPIO1_END_ADDR 0x4804D000
17 #define GPIO1_SIZE (GPIO1_END_ADDR - GPIO1_START_ADDR)
18

19 #define GPIO2_START_ADDR 0x41A4C000
20 #define GPIO2_END_ADDR 0x41A4D000
21 #define GPIO2_SIZE (GPIO2_END_ADDR - GPIO2_START_ADDR)
22

23 #define GPIO3_START_ADDR 0x41A4E000
24 #define GPIO3_END_ADDR 0x41A4F000
25 #define GPIO3_SIZE (GPIO3_END_ADDR - GPIO3_START_ADDR)
26

27 #define GPIO_DATAIN 0x138
28 #define GPIO_SETDATAOUT 0x194
29 #define GPIO_CLEARDATAOUT 0x190
30

31 #define GPIO_03 (1<<3)
32 #define GPIO_07 (1<<7)
33 #define GPIO_31 (1<<31)
34 #define GPIO_60 (1<<28)
35 #endif

pushLEDmmap.h

Add the code in Code for directly reading memory addresses (pushLEDmmap.c) to a file named
pushLEDmmap.c.

Listing 4.60: Code for directly reading memory addresses (push-
LEDmmap.c)

1 // From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
2 // -through-dev-mem
3 // user contributions licensed under cc by-sa 3.0 with attribution required
4 // http://creativecommons.org/licenses/by-sa/3.0/
5 // http://blog.stackoverflow.com/2009/06/attribution-required/
6 // Author: madscientist159 (http://stackoverflow.com/users/3000377/madscientist159)
7 //
8 // Read one gpio pin and write it out to another using mmap.

(continues on next page)

4.1. BeagleBone Cookbook 303

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

9 // Be sure to set -O3 when compiling.
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <sys/mman.h>
13 #include <fcntl.h>
14 #include <signal.h> // Defines signal-handling functions (i.e. trap Ctrl-C)
15 #include "pushLEDmmap.h"
16

17 // Global variables
18 int keepgoing = 1; // Set to 0 when Ctrl-c is pressed
19

20 // Callback called when SIGINT is sent to the process (Ctrl-C)
21 void signal_handler(int sig) {
22 printf("\nCtrl-C pressed, cleaning up and exiting...\n");
23 keepgoing = 0;
24 }
25

26 int main(int argc, char *argv[]) {
27 volatile void *gpio_addr;
28 volatile unsigned int *gpio_datain;
29 volatile unsigned int *gpio_setdataout_addr;
30 volatile unsigned int *gpio_cleardataout_addr;
31

32 // Set the signal callback for Ctrl-C
33 signal(SIGINT, signal_handler);
34

35 int fd = open("/dev/mem", O_RDWR);
36

37 printf("Mapping %X - %X (size: %X)\n", GPIO0_START_ADDR, GPIO0_END_ADDR,
38 GPIO0_SIZE);
39

40 gpio_addr = mmap(0, GPIO0_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
41 GPIO0_START_ADDR);
42

43 gpio_datain = gpio_addr + GPIO_DATAIN;
44 gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
45 gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;
46

47 if(gpio_addr == MAP_FAILED) {
48 printf("Unable to map GPIO\n");
49 exit(1);
50 }
51 printf("GPIO mapped to %p\n", gpio_addr);
52 printf("GPIO SETDATAOUTADDR mapped to %p\n", gpio_setdataout_addr);
53 printf("GPIO CLEARDATAOUT mapped to %p\n", gpio_cleardataout_addr);
54

55 printf("Start copying GPIO_07 to GPIO_31\n");
56 while(keepgoing) {
57 if(*gpio_datain & GPIO_07) {
58 *gpio_setdataout_addr= GPIO_31;
59 } else {
60 *gpio_cleardataout_addr = GPIO_31;
61 }
62 //usleep(1);
63 }
64

(continues on next page)

304 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

65 munmap((void *)gpio_addr, GPIO0_SIZE);
66 close(fd);
67 return 0;
68 }

pushLEDmmap.c

Now, compile and run the code:

bone$ gcc -O3 pushLEDmmap.c -o pushLEDmmap
bone$ sudo ./pushLEDmmap
Mapping 44E07000 - 44E08000 (size: 1000)
GPIO mapped to 0xb6fac000
GPIO SETDATAOUTADDR mapped to 0xb6fac194
GPIO CLEARDATAOUT mapped to 0xb6fac190
Start copying GPIO_07 to GPIO_31
^C
Ctrl-C pressed, cleaning up and exiting...

The code is in a tight while loop that checks the status of GPIO 7 and copies it to GPIO 31.

Tighter Delay Bounds with the PREEMPT_RT Kernel

Problem You want to run real-time processes on the Beagle, but the OS is slowing things down.

Solution The Kernel can be compiled with PREEMPT_RT enabled which reduces the delay from when
a thread is scheduled to when it runs.

Switching to a PREEMPT_RT kernel is rather easy, but be sure to follow the steps in the Discussion to see
how much the latencies are reduced.

• First see which kernel you are running:

bone$ uname -a
Linux breadboard-home 5.10.120-ti-r47 #1bullseye SMP PREEMPT Tue Jul 12 18:59:38 UTC␣
→˓2022 armv7l GNU/Linux

I’m running a 5.10 kernel. Remember the whole string, 5.10.120-ti-r47, for later.

• Go to kernel update and look for 5.10.

Fig. 4.71: The regular and RT kernels

In The regular and RT kernels you see the reular kernel on top and the RT below.

4.1. BeagleBone Cookbook 305

https://forum.beagleboard.org/t/debian-10-x-11-x-kernel-updates/30928

BeagleBoard Docs, Release 0.0.9

• We want the RT one.

bone$ sudo apt update
bone$ sudo apt install bbb.io-kernel-5.10-ti-rt-am335x

Note: Use the am57xx if you are using the BeagleBoard AI or AI64.

• Before rebooting, edit /boot/uEnv.txt to start with:

#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0

uname_r=5.10.120-ti-r47
uname_r=5.10.120-ti-rt-r47
#uuid=
#dtb=

uname_r tells the boot loader which kernel to boot. Here we’ve commented out the regular kernel and
left in the RT kernel. Next time you boot you’ll be running the RT kernel. Don’t reboot just yet. Let’s
gather some latency data first.

Bootlin’s preempt_rt workshop looks like a good workshop on PREEMPT RT. Their slides say:

• One way to implement a multi-task Real-Time Operating System is to have a preemptible system

• Any task can be interrupted at any point so that higher priority tasks can run

• Userspace preemption already exists in Linux

• The Linux Kernel also supports real-time scheduling policies

• However, code that runs in kernel mode isn’t fully preemptible

• The Preempt-RT patch aims at making all code running in kernel mode preemptible

The workshop goes into many details on how to get real-time performance on Linux. Checkout their
slides and labs. Though you can skip the first lab since we present a simpler way to get the RT kernel
running.

Cyclictest

cyclictest is one tool for measuring the latency from when a thread is schduled and when it runs. The
code/rt directory in the git repo has some scripts for gathering latency data and plotting it. Here’s how
to run the scripts.

• First look in rt/install.sh to see what to install.

Listing 4.61: rt/install.sh
1 sudo apt install rt-tests
2 # You can run gnuplot on the host
3 sudo apt install gnuplot

rt/install.sh

• Open up another window and start something that will create a load on the Bone, then run the
following:

bone$ time sudo ./hist.gen > nort.hist

hist.gen shows what’s being run. It defaults to 100,000 loops, so it takes a while. The data is saved in
nort.hist, which stands for no RT histogram.

306 Chapter 4. Books

https://bootlin.com/doc/training/preempt-rt/
https://bootlin.com/doc/training/preempt-rt/preempt-rt-slides.pdf
https://bootlin.com/doc/training/preempt-rt/preempt-rt-labs.pdf

BeagleBoard Docs, Release 0.0.9

Listing 4.62: hist.gen
1 #!/bin/sh
2 # This code is from Julia Cartwright julia@kernel.org
3

4 cyclictest -m -S -p 90 -h 400 -l "${1:-100000} "

rt/hist.gen

Note: If you get an error:

Unable to change scheduling policy! Probably missing capabilities, either run as root or increase
RLIMIT_RTPRIO limits

try running ./setup.sh. If that doesn’t work try:

bone$ sudo bash
bone# ulimit -r unlimited
bone# ./hist.gen > nort.hist
bone# exit

• Now you are ready to reboot into the RT kernel and run the test again.

bone$ reboot

• After rebooting:

bone$ uname -a
Linux breadboard-home 5.10.120-ti-rt-r47 #1bullseye SMP PREEMPT RT Tue Jul 12␣
→˓18:59:38 UTC 2022 armv7l GNU/Linux

Congratulations you are running the RT kernel.

Note: If the Beagle appears to be running (the LEDs are flashing) but you are having trouble connecting
via ssh 192.168.7.2, you can try connecting using the approach shown in Viewing and Debugging the
Kernel and u-boot Messages at Boot Time.

Now run the scipt again (note it’s being saved in rt.hist this time.)

bone$ time sudo ./hist.gen > rt.hist

Note: At this point yoou can edit /boot/uEnt.txt to boot the non RT kernel and reboot.

Now it’s time to plot the results.

bone$ gnuplot hist.plt

This will generate the file cyclictest.png which contains your plot. It should look like:

Notice the NON-RT data have much longer latenices. They may not happen often (fewer than 10 times
in each bin), but they are occuring and may be enough to miss a real-time deadline.

The PREEMPT-RT times are all under a 150s.

I/O with simpPRU

Problem You require better timing than running C on the ARM can give you.

4.1. BeagleBone Cookbook 307

BeagleBoard Docs, Release 0.0.9

Fig. 4.72: Histogram of Non-RT and RT kernels running cyclictest

308 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Solution The AM335x processor on the Bone has an ARM processor that is running Linux, but it also
has two 32-bit PRUs that are available for processing I/O. It takes a fair amount of understanding to
program the PRU. Fortunately, simpPRU is an intuitive language for PRU which compiles down to PRU
C. This solution shows how to use it.

Background

simpPRU

4.1.9 Capes

Previous chapters of this book show a variety of ways to interface BeagleBone Black to the physical world
by using a breadboard and wiring to the +P8+ and +P9+ headers. This is a great approach because it’s
easy to modify your circuit to debug it or try new things. At some point, though, you might want a more
permanent solution, either because you need to move the Bone and you don’t want wires coming loose,
or because you want to share your hardware with the masses.

You can easily expand the functionality of the Bone by adding a cape. A cape is simply a board–often a
printed circuit board (PCB) that connects to the +P8+ and +P9+ headers and follows a few standard
pin usages. You can stack up to four capes onto the Bone. Capes can range in size from Bone-sized (Using
a 128 x 128-Pixel LCD Cape) to much larger than the Bone (Using a Seven-Inch LCD Cape).

This chapter shows how to attach a couple of capes, move your design to a protoboard, then to a PCB,
and finally on to mass production.

Using a Seven-Inch LCD Cape

Problem You want to display the Bone’s desktop on a portable LCD.

Solution
Note: #TODO# The 4D Systems LCD capes would make a better example. CircuitCo is out of business.

A number of LCD capes are built for the Bone, ranging in size from three to seven inches. This recipe
attaches a seven-inch BeagleBone LCD7 from CircuitCo (shown in 7” LCD) to the Bone.

7” LCD

Note: Seven-inch LCD from CircuitCo, 7” LCD was originally posted by CircuitCo at http://elinux.
org/File:BeagleBone-LCD7-Front.jpg under a Creative Commons Attribution-ShareAlike 3.0 Unported
License.

To make this recipe, you will need:

• Seven-inch LCD cape

• A 5 V power supply

Just attach the Bone to the back of the LCD, making sure pin 1 of P9 lines up with pin 1 of +P9+ on the
LCD. Apply a 5 V power supply, and the desktop will appear on your LCD, as shown in Seven-inch LCD
desktop.

Attach a USB keyboard and mouse, and you have a portable Bone. Wireless keyboard and mouse combi-
nations make a nice solution to avoid the need to add a USB hub.

4.1. BeagleBone Cookbook 309

https://simppru.readthedocs.io/en/latest/
http://bit.ly/1wucweC
http://bit.ly/1AjlXJ9
http://bit.ly/1NK8Hra
http://circuitco.com/
http://elinux.org/File:BeagleBone-LCD7-Front.jpg
http://elinux.org/File:BeagleBone-LCD7-Front.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://www.adafruit.com/products/922
https://www.adafruit.com/products/922

BeagleBoard Docs, Release 0.0.9

Fig. 4.73: Seven-inch LCD desktop

310 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Using a 128 x 128-Pixel LCD Cape

Problem You want to use a small LCD to display things other than the desktop.

Solution The MiniDisplay is a 128 x 128 full-color LCD cape that just fits on the Bone, as shown in
MiniDisplay 128 x 128-pixel LCD from CircuitCo.

Fig. 4.74: MiniDisplay 128 x 128-pixel LCD from CircuitCo

To make this recipe, you will need:

• MiniDisplay LCD cape

Attach to the Bone and apply power. Then run the following commands:

From http://elinux.org/CircuitCo:MiniDisplay_Cape
Datasheet:
https://www.crystalfontz.com/products/document/3277/ST7735_V2.1_20100505.pdf
bone$ wget http://elinux.org/images/e/e4/Minidisplay-example.tar.gz
bone$ tar zmxvf Minidisplay-example.tar.gz
bone$ cd minidisplay-example
bone$ make
bone$./minidisplay-test
Unable to initialize SPI: No such file or directory
Aborted

4.1. BeagleBone Cookbook 311

http://bit.ly/1xd0r8p

BeagleBoard Docs, Release 0.0.9

Warning: You might get a compiler warning, but the code should run fine.

The MiniDisplay uses the Serial Peripheral Interface (SPI) interface, and it’s not initialized. The manu-
facturer’s website suggests enabling SPI0 by using the following commands:

bone$ export SLOTS=/sys/devices/bone_capemgr.*/slots
bone$ echo BB-SPIDEV0 > $SLOTS

Hmmm, something isn’t working here. Here’s how to see what happened:

Here’s how to see what’s already configured:

You can unconfigure it by using the following commands:

bone$ echo -10 > $SLOTS
bone$ cat $SLOTS
0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
7: ff:P-O-L Override Board Name,00A0,Override Manuf,bspm_P9_42_27
8: ff:P-O-L Override Board Name,00A0,Override Manuf,bspm_P9_41_27
9: ff:P-O-L Override Board Name,00A0,Override Manuf,am33xx_pwm

Now P9_21 is free for the MiniDisplay to use.

Note: In future Bone images, all of the pins will already be allocated as part of the main device tree using
runtime pinmux helpers and configured at runtime using the config-pin utility. This would eliminate the
need for device tree overlays in most cases.

Now, configure it for the MiniDisplay and run a test:

bone$ echo BB-SPIDEV0 > $SLOTS
bone$./minidisplay-test

You then see Boris, as shown in Mini display Boris.

Mini display Boris

Note: MiniDisplay showing Boris, Mini display Boris was originally posted by David Anders at http:
//elinux.org/File:Minidisplay-boris.jpg under a Creative Commons Attribution-ShareAlike 3.0 Unported
License.

Connecting Multiple Capes

Problem You want to use more than one cape at a time.

Solution First, look at each cape that you want to stack mechanically. Are they all using stacking
headers like the ones shown in Stacking headers? No more than one should be using non-stacking
headers.

312 Chapter 4. Books

http://bit.ly/1xd0r8p
http://bit.ly/1xd0r8p
http://bit.ly/1EXLeP2
http://elinux.org/File:Minidisplay-boris.jpg
http://elinux.org/File:Minidisplay-boris.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBoard Docs, Release 0.0.9

Fig. 4.75: Stacking headers

4.1. BeagleBone Cookbook 313

BeagleBoard Docs, Release 0.0.9

Note that larger LCD panels might provide expansion headers, such as the ones shown in LCD Backside,
rather than the stacking headers, and that those can also be used for adding additional capes.

LCD Backside

Note: Back side of LCD7 cape, LCD Backside was originally posted by CircuitCo at http://elinux.org/File:
BeagleBone-LCD-Backside.jpg under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Note: #TODO# One of the 4D Systems LCD capes would make a better example for an LCD cape. The
CircuitCo cape is no longer available.

Next, take a note of each pin utilized by each cape. The BeagleBone Capes catalog provides a graphical
representation for the pin usage of most capes, as shown in Audio cape pins for the Circuitco Audio Cape.

Note: #TODO# Bela would make a better example for an audio cape. The CircuitCo cape is no longer
available.

Audio cape pins

Note: Pins utilized by CircuitCo Audio Cape, Audio cape pins was originally posted by Djackson at http:
//elinux.org/File:Audio_pins_revb.png under a Creative Commons Attribution-ShareAlike 3.0 Unported
License.

314 Chapter 4. Books

http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://beaglebonecapes.com
http://elinux.org/File:Audio_pins_revb.png
http://elinux.org/File:Audio_pins_revb.png
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBoard Docs, Release 0.0.9

In most cases, the same pin should never be used on two different capes, though in some cases, pins can
be shared. Here are some exceptions:

• GND

– The ground (GND) pins should be shared between the capes, and there’s no need to worry
about consumed resources on those pins.

• VDD_3V3

– The 3.3 V power supply (VDD_3V3) pins can be shared by all capes to supply power, but
the total combined consumption of all the capes should be less than 500 mA (250 mA per
VDD_3V3 pin).

• VDD_5V

– The 5.0 V power supply (VDD_5V) pins can be shared by all capes to supply power,
but the total combined consumption of all the capes should be less than 2 A (1 A per
+VD*_5V+ p*n). It is possible for one, and only one, of the capes to _provide_ power
to this pin rather than consume it, and it should provide at least 3 A to ensure proper
system function. Note that when no voltage is applied to the DC connector, nor from a
cape, these pins will not be powered, even if power is provided via USB.

• SYS_5V

– The regulated 5.0 V power supply (SYS_5V) pins can be shared by all capes to supply
power, but the total combined consumption of all the capes should be less than 500 mA
(250 mA per SYS_5V pin).

• VADC and AGND

– The ADC reference voltage pins can be shared by all capes.

• I2C2_SCL and I2C2_SDA

4.1. BeagleBone Cookbook 315

BeagleBoard Docs, Release 0.0.9

– I2C is a shared bus, and the I2C2_SCL and I2C2_SDA pins default to having this bus
enabled for use by cape expansion ID EEPROMs.

Moving from a Breadboard to a Protoboard

Problem You have your circuit working fine on the breadboard, but you want a more reliable solution.

Solution Solder your components to a protoboard.

To make this recipe, you will need:

• Protoboard

• Soldering iron

• Your other components

Many places make premade circuit boards that are laid out like the breadboard we have been using.
Beaglebread shows the BeagleBone Breadboard, which is just one protoboard option.

Beaglebread

Note: This was originally posted by William Traynor at http://elinux.org/File:BeagleBone-Breadboard.
jpg under a Creative Commons Attribution-ShareAlike 3.0 Unported License

You just solder your parts on the protoboard as you had them on the breadboard.

Creating a Prototype Schematic

Problem You’ve wired up a circuit on a breadboard. How do you turn that prototype into a schematic
others can read and that you can import into other design tools?

Solution In Fritzing tips, we introduced Fritzing as a useful tool for drawing block diagrams. Fritzing
can also do circuit schematics and printed-circuit layout. For example, A simple robot controller diagram
(quickBot.fzz) shows a block diagram for a simple robot controller (quickBot.fzz is the name of the
Fritzing file used to create the diagram).

The controller has an H-bridge to drive two DC motors (Controlling the Speed and Direction of a DC
Motor), an IR range sensor, and two headers for attaching analog encoders for the motors. Both the IR
sensor and the encoders have analog outputs that exceed 1.8 V, so each is run through a voltage divider

316 Chapter 4. Books

http://bit.ly/1HCwtB4
http://elinux.org/File:BeagleBone-Breadboard.jpg
http://elinux.org/File:BeagleBone-Breadboard.jpg
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBoard Docs, Release 0.0.9

Fig. 4.76: A simple robot controller diagram (quickBot.fzz)

(two resistors) to scale the voltage to the correct range (see Reading a Distance Sensor (Variable Pulse
Width Sensor) for a voltage divider example).

Automatically generated schematic shows the schematic automatically generated by Fritzing. It’s a mess.
It’s up to you to fix it.

Cleaned-up schematic shows my cleaned-up schematic. I did it by moving the parts around until it looked
better.

You might find that you want to create your design in a more advanced design tool, perhaps because it
has the library components you desire, it integrates better with other tools you are using, or it has some
other feature (such as simulation) of which you’d like to take advantage.

Verifying Your Cape Design

Problem You’ve got a design. How do you quickly verify that it works?

Solution To make this recipe, you will need:

• An oscilloscope

Break down your design into functional subcomponents and write tests for each. Use components you
already know are working, such as the onboard LEDs, to display the test status with the code in Testing
the quickBot motors interface (quickBot_motor_test.js).

Testing the quickBot motors interface (quickBot_motor_test.js)

Using the solution in Basics, you can untether from your coding station to test your design at your lab
workbench, as shown in quickBot motor test code under scope.

4.1. BeagleBone Cookbook 317

BeagleBoard Docs, Release 0.0.9

Fig. 4.77: Automatically generated schematic

SparkFun provides a useful guide to using an oscilloscope. You might want to check it out if you’ve never
used an oscilloscope before. Looking at the stimulus you’ll generate before you connect up your hardware
will help you avoid surprises.

Laying Out Your Cape PCB

Problem You’ve generated a diagram and schematic for your circuit and verified that they are correct.
How do you create a PCB?

Solution If you’ve been using Fritzing, all you need to do is click the PCB tab, and there’s your board.
Well, almost. Much like the schematic view shown in Creating a Prototype Schematic, you need to do
some layout work before it’s actually usable. I just moved the components around until they seemed
to be grouped logically and then clicked the Autoroute button. After a minute or two of trying various
layouts, Fritzing picked the one it determined to be the best. Simple robot PCB shows the results.

The Fritzing pre-fab web page has a few helpful hints, including checking the widths of all your traces
and cleaning up any questionable routing created by the autorouter.

The PCB in Simple robot PCB is a two-sided board. One color (or shade of gray in the printed book)
represents traces on one side of the board, and the other color (or shade of gray) is the other side.
Sometimes, you’ll see a trace come to a small circle and then change colors. This is where it is switching
sides of the board through what’s called a _via_. One of the goals of PCB design is to minimize the
number of vias.

Simple robot PCB wasn’t my first try or my last. My approach was to see what was needed to hook where
and move the components around to make it easier for the autorouter to carry out its job.

Note: There are entire books and websites dedicated to creating PCB layouts. Look around and see
what you can find. SparkFun’s guide to making PCBs is particularly useful.

Customizing the Board Outline

One challenge that slipped my first pass review was the board outline. The part we installed in Fritzing
tips is meant to represent BeagleBone Black, not a cape, so the outline doesn’t have the notch cut out of

318 Chapter 4. Books

http://bit.ly/18AzuoR
http://bit.ly/1HCxokQ
http://bit.ly/1wXTLki

BeagleBoard Docs, Release 0.0.9

Fig. 4.78: Cleaned-up schematic
4.1. BeagleBone Cookbook 319

BeagleBoard Docs, Release 0.0.9

Fig. 4.79: Zoomed-in schematic

Fig. 4.80: quickBot motor test showing kickback

320 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.81: quickBot motor test code under scope

Fig. 4.82: Simple robot PCB

4.1. BeagleBone Cookbook 321

BeagleBoard Docs, Release 0.0.9

it for the Ethernet connector.

The Fritzing custom PCB outline page describes how to create and use a custom board outline. Although
it is possible to use a drawing tool like Inkscape, I chose to use the SVG path command directly to create
Outline SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg).

Outline SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg)

The measurements are taken from the beagleboneblack-mechanical section of the BeagleBone Black
System Reference Manual, as shown in Cape dimensions.

Fig. 4.83: Cape dimensions

You can observe the rendered output of Outline SVG for BeagleBone cape (beagle-
bone_cape_boardoutline.svg) quickly by opening the file in a web browser, as shown in Rendered
cape outline in Chrome.

Fritzing tips

After you have the SVG outline, you’ll need to select the PCB in Fritzing and select a custom shape in the
Inspector box. Begin with the original background, as shown in PCB with original board, without notch
for Ethernet connector.

Hide all but the Board Layer (PCB with all but the Board Layer hidden).

Select the PCB1 object and then, in the Inspector pane, scroll down to the “load image file” button
(Clicking :load image file: with PCB1 selected).

322 Chapter 4. Books

http://bit.ly/1xd1aGV
https://inkscape.org/en/
http://bit.ly/1b2aZmn

BeagleBoard Docs, Release 0.0.9

Fig. 4.84: Rendered cape outline in Chrome

Fig. 4.85: PCB with original board, without notch for Ethernet connector

4.1. BeagleBone Cookbook 323

BeagleBoard Docs, Release 0.0.9

Fig. 4.86: PCB with all but the Board Layer hidden

Fig. 4.87: Clicking :load image file: with PCB1 selected

324 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Navigate to the beaglebone_cape_boardoutline.svg file created in Outline SVG for BeagleBone cape (beagle-
bone_cape_boardoutline.svg), as shown in Selecting the .svg file.

Fig. 4.88: Selecting the .svg file

Turn on the other layers and line up the Board Layer with the rest of the PCB, as shown in PCB Inspector.

Now, you can save your file and send it off to be made, as described in Producing a Prototype.

PCB Design Alternatives

There are other free PCB design programs. Here are a few.

TO PROD: The headings I’ve marked as bold lines really should be subheadings of “PCB Design Alterna-
tives,” but AsciiDoc won’t let me go that deep (to the level). Is what I’ve done the best solution, or is
there a way to create another heading level?

EAGLE

Eagle PCB and DesignSpark PCB are two popular design programs. Many capes (and other PCBs) are
designed with Eagle PCB, and the files are available. For example, the MiniDisplay cape (Using a 128 x
128-Pixel LCD Cape) has the schematic shown in Schematic for the MiniDisplay cape and PCB shown in
PCB for MiniDisplay cape.

A good starting point is to take the PCB layout for the MiniDisplay and edit it for your project. The
connectors for +P8+ and +P9+ are already in place and ready to go.

Eagle PCB is a powerful system with many good tutorials online. The free version runs on Windows,
Mac, and Linux, but it has three limitations:

• The usable board area is limited to 100 x 80 mm (4 x 3.2 inches).

• You can use only two signal layers (Top and Bottom).

4.1. BeagleBone Cookbook 325

http://www.cadsoftusa.com/
http://bit.ly/19cbwS0
http://bit.ly/1E5Kh3l

BeagleBoard Docs, Release 0.0.9

Fig. 4.89: PCB Inspector

Fig. 4.90: Schematic for the MiniDisplay cape

326 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.91: PCB for MiniDisplay cape

• The schematic editor can create only one sheet.

You can install Eagle PCB on your Linux host by using the following command:

host$ sudo apt install eagle
Reading package lists... Done
Building dependency tree
Reading state information... Done
...
Setting up eagle (6.5.0-1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.4) ...
host$ eagle

You’ll see the startup screen shown in Eagle PCB startup screen.

Fig. 4.92: Eagle PCB startup screen

Click “Run as Freeware.” When my Eagle started, it said it needed to be updated. To update on Linux,
follow the link provided by Eagle and download eagle-lin-7.2.0.run (or whatever version is current.).
Then run the following commands:

host$ chmod +x eagle-lin-7.2.0.run
host$./eagle-lin-7.2.0.run

A series of screens will appear. Click Next. When you see a screen that looks like The Eagle installation
destination directory, note the Destination Directory.

Continue clicking Next until it’s installed. Then run the following commands (where ~/eagle-7.2.0 is the
path you noted in The Eagle installation destination directory):

4.1. BeagleBone Cookbook 327

BeagleBoard Docs, Release 0.0.9

Fig. 4.93: The Eagle installation destination directory

host$ cd /usr/bin
host$ sudo rm eagle
host$ sudo ln -s ~/eagle-7.2.0/bin/eagle .
host$ cd
host$ eagle

The ls command links eagle in /usr/bin, so you can run +eagle+ from any directory. After eagle starts,
you’ll see the start screen shown in The Eagle start screen.

Ensure that the correct version number appears.

If you are moving a design from Fritzing to Eagle, see Migrating a Fritzing Schematic to Another Tool for
tips on converting from one to the other.

DesignSpark PCB

The free DesignSpark PCB doesn’t have the same limitations as Eagle PCB, but it runs only on Windows.
Also, it doesn’t seem to have the following of Eagle at this time.

Upverter

In addition to free solutions you run on your desktop, you can also work with a browser-based tool called
Upverter. With Upverter, you can collaborate easily, editing your designs from anywhere on the Internet.
It also provides many conversion options and a PCB fabrication service.

Note: Don’t confuse Upverter with Upconverter (Migrating a Fritzing Schematic to Another Tool). Though
their names differ by only three letters, they differ greatly in what they do.

328 Chapter 4. Books

http://bit.ly/19cbwS0
https://upverter.com/

BeagleBoard Docs, Release 0.0.9

Fig. 4.94: The Eagle start screen

Kicad

Unlike the previously mentioned free (no-cost) solutions, Kicad is open source and provides some fea-
tures beyond those of Fritzing. Notably, CircuitHub site (discussed in Putting Your Cape Design into
Production) provides support for uploading Kicad designs.

Migrating a Fritzing Schematic to Another Tool

Problem You created your schematic in Fritzing, but it doesn’t integrate with everything you need.
How can you move the schematic to another tool?

Solution Use the Upverter schematic-file-converter Python script. For example, suppose that you want
to convert the Fritzing file for the diagram shown in A simple robot controller diagram (quickBot.fzz).
First, install Upverter.

I found it necessary to install +libfreetype6+ and +freetype-py+ onto my system, but you might not
need this first step:

host$ sudo apt install libfreetype6
Reading package lists... Done
Building dependency tree
Reading state information... Done
libfreetype6 is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 154 not upgraded.
host$ sudo pip install freetype-py
Downloading/unpacking freetype-py

(continues on next page)

4.1. BeagleBone Cookbook 329

http://bit.ly/1b2bnBg
http://circuithub.com/
http://bit.ly/1wXUkdM

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

Running setup.py egg_info for package freetype-py

Installing collected packages: freetype-py
Running setup.py install for freetype-py

Successfully installed freetype-py
Cleaning up...

Note: All these commands are being run on the Linux-based host computer, as shown by the +host$+
prompt. Log in as a normal user, not +root+.

Now, install the schematic-file-converter tool:

host$ git clone git@github.com:upverter/schematic-file-converter.git
Cloning into 'schematic-file-converter'...
remote: Counting objects: 22251, done.
remote: Total 22251 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (22251/22251), 39.45 MiB | 7.28 MiB/s, done.
Resolving deltas: 100% (14761/14761), done.
Checking connectivity... done.
Checking out files: 100% (16880/16880), done.
host$ cd schematic-file-converter
host$ sudo python setup.py install
.
.
.
Extracting python_upconvert-0.8.9-py2.7.egg to \

/usr/local/lib/python2.7/dist-packages
Adding python-upconvert 0.8.9 to easy-install.pth file

Installed /usr/local/lib/python2.7/dist-packages/python_upconvert-0.8.9-py2.7.egg
Processing dependencies for python-upconvert==0.8.9
Finished processing dependencies for python-upconvert==0.8.9
host$ cd ..
host$ python -m upconvert.upconverter -h
usage: upconverter.py [-h] [-i INPUT] [-f TYPE] [-o OUTPUT] [-t TYPE]

[-s SYMDIRS [SYMDIRS ...]] [--unsupported]
[--raise-errors] [--profile] [-v] [--formats]

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

read INPUT file in
-f TYPE, --from TYPE read input file as TYPE
-o OUTPUT, --output OUTPUT

write OUTPUT file out
-t TYPE, --to TYPE write output file as TYPE
-s SYMDIRS [SYMDIRS ...], --sym-dirs SYMDIRS [SYMDIRS ...]

specify SYMDIRS to search for .sym files (for gEDA
only)

--unsupported run with an unsupported python version
--raise-errors show tracebacks for parsing and writing errors
--profile collect profiling information
-v, --version print version information and quit
--formats print supported formats and quit

330 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

At the time of this writing, Upverter suppports the following file types:

File type Support
openjson i/o
kicad i/o
geda i/o
eagle i/o
eaglexml i/o
fritzing in only schematic only
gerber i/o
specctra i/o
image out only
ncdrill out only
bom (csv) out only
netlist (csv) out only

After Upverter is installed, run the file (quickBot.fzz) that generated A simple robot controller diagram
(quickBot.fzz) through Upverter:

host$ python -m upconvert.upconverter -i quickBot.fzz \
-f fritzing -o quickBot-eaglexml.sch -t eaglexml --unsupported
WARNING: RUNNING UNSUPPORTED VERSION OF PYTHON (2.7 > 2.6)
DEBUG:main:parsing quickBot.fzz in format fritzing
host$ ls -l
total 188
-rw-rw-r-- 1 ubuntu ubuntu 63914 Nov 25 19:47 quickBot-eaglexml.sch
-rw-r--r-- 1 ubuntu ubuntu 122193 Nov 25 19:43 quickBot.fzz
drwxrwxr-x 9 ubuntu ubuntu 4096 Nov 25 19:42 schematic-file-converter

Output of Upverter conversion shows the output of the conversion.

No one said it would be pretty!

I found that Eagle was more generous at reading in the +eaglexml+ format than the +eagle+ format.
This also made it easier to hand-edit any translation issues.

Producing a Prototype

Problem You have your PCB all designed. How do you get it made?

Solution To make this recipe, you will need:

• A completed design

• Soldering iron

• Oscilloscope

• Multimeter

• Your other components

Upload your design to OSH Park <http://oshpark.com> and order a few boards. The OSH Park QuickBot
Cape shared project page shows a resulting shared project page for the quickBot cape created in Laying
Out Your Cape PCB. We’ll proceed to break down how this design was uploaded and shared to enable
ordering fabricated PCBs.

Within Fritzing, click the menu next to “Export for PCB” and choose “Extended Gerber,” as shown in
Choosing “Extended Gerber” in Fritzing. You’ll need to choose a directory in which to save them and then

4.1. BeagleBone Cookbook 331

http://bit.ly/1MtlzAp

BeagleBoard Docs, Release 0.0.9

Fig. 4.95: Output of Upverter conversion

Fig. 4.96: The OSH Park QuickBot Cape shared project page

332 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.97: Choosing “Extended Gerber” in Fritzing

4.1. BeagleBone Cookbook 333

BeagleBoard Docs, Release 0.0.9

compress them all into a Zip file. The WikiHow article on creating Zip files might be helpful if you aren’t
very experienced at making these.

Things on the OSH Park website are reasonably self-explanatory. You’ll need to create an account and
upload the Zip file containing the Gerber files you created. If you are a cautious person, you might
choose to examine the Gerber files with a Gerber file viewer first. The Fritzing fabrication FAQ offers
several suggestions, including gerbv for Windows and Linux users.

When your upload is complete, you’ll be given a quote, shown images for review, and presented with
options for accepting and ordering. After you have accepted the design, your list of accepted designs will
also include the option of enabling sharing of your designs so that others can order a PCB, as well. If you
are looking to make some money on your design, you’ll want to go another route, like the one described
in Putting Your Cape Design into Production. QuickBot PCB shows the resulting PCB that arrives in the
mail.

Fig. 4.98: QuickBot PCB

Now is a good time to ensure that you have all of your components and a soldering station set up as
in Moving from a Breadboard to a Protoboard, as well as an oscilloscope, as used in Verifying Your Cape
Design.

When you get your board, it is often informative to “buzz out” a few connections by using a multimeter.
If you’ve never used a multimeter before, the SparkFun or Adafruit tutorials might be helpful. Set your
meter to continuity testing mode and probe between points where the headers are and where they should
be connecting to your components. This would be more difficult and less accurate after you solder down
your components, so it is a good idea to keep a bare board around just for this purpose.

You’ll also want to examine your board mechanically before soldering parts down. You don’t want to
waste components on a PCB that might need to be altered or replaced.

When you begin assembling your board, it is advisable to assemble it in functional subsections, if possible,

334 Chapter 4. Books

http://bit.ly/1Br5lEh
http://bit.ly/1B4GqRU
http://oshpark.com
http://bit.ly/1B4GzEZ
http://bit.ly/18bUgeA
http://gerbv.sourceforge.net/
https://oshpark.com/users/current
http://bit.ly/18bUgeA
http://bit.ly/1Br5Xtv

BeagleBoard Docs, Release 0.0.9

to help narrow down any potential issues. QuickBot motors under test shows the motor portion wired up
and running the test in Testing the quickBot motors interface (quickBot_motor_test.js).

Fig. 4.99: QuickBot motors under test

Continue assembling and testing your board until you are happy. If you find issues, you might choose
to cut traces and use point-to-point wiring to resolve your issues before placing an order for a new PCB.
Better right the second time than the third!

Creating Contents for Your Cape Configuration EEPROM

Problem Your cape is ready to go, and you want it to automatically initialize when the Bone boots up.

Solution Complete capes have an I2C EEPROM on board that contains configuration information that is
read at boot time. Adventures in BeagleBone Cape EEPROMs gives a helpful description of two methods
for programming the EEPROM. How to Roll your own BeagleBone Capes is a good four-part series on
creating a cape, including how to wire and program the EEPROM.

Putting Your Cape Design into Production

Problem You want to share your cape with others. How do you scale up?

Solution CircuitHub offers a great tool to get a quick quote on assembled PCBs. To make things simple,
I downloaded the CircuitCo MiniDisplay Cape Eagle design materials and uploaded them to CircuitHub.

4.1. BeagleBone Cookbook 335

http://bit.ly/1Fb64uF
http://bit.ly/1E5M7RJ
https://circuithub.com/
http://bit.ly/1C5uvJc

BeagleBoard Docs, Release 0.0.9

After the design is uploaded, you’ll need to review the parts to verify that CircuitHub has or can order
the right ones. Find the parts in the catalog by changing the text in the search box and clicking the
magnifying glass. When you’ve found a suitable match, select it to confirm its use in your design, as
shown in CircuitHub part matching.

Fig. 4.100: CircuitHub part matching

When you’ve selected all of your parts, a quote tool appears at the bottom of the page, as shown in
CircuitHub quote generation.

Checking out the pricing on the MiniDisplay Cape (without including the LCD itself) in CircuitHub price
examples (all prices USD), you can get a quick idea of how increased volume can dramatically impact the
per-unit costs.

Table 4.5: CircuitHub price examples (all prices USD)
Quantity 1 10 100 1000 10,000
PCB $208.68 $21.75 $3.30 $0.98 $0.90
Parts $11.56 $2.55 $1.54 $1.01 $0.92
Assembly $249.84 $30.69 $7.40 $2.79 $2.32
Per unit $470.09 $54.99 $12.25 $4.79 $4.16
Total $470.09 $550.00 $1,225.25 $4,796.00 $41,665.79

Checking the Crystalfontz web page for the LCD, you can find the prices for the LCDs as well, as shown
in LCD pricing (USD).

Table 4.6: LCD pricing (USD)
Quantity 1 10 100 1000 10,000
Per unit $12.12 $7.30 $3.86 $2.84 $2.84
Total $12.12 $73.00 $386.00 $2,840.00 $28,400.00

To enable more cape developers to launch their designs to the market, CircuitHub has launched a http:
//campaign.circuithub.com{[}group buy campaign site]. You, as a cape developer, can choose how

336 Chapter 4. Books

http://bit.ly/1GF6xqE
http://campaign.circuithub.com{[}group
http://campaign.circuithub.com{[}group

BeagleBoard Docs, Release 0.0.9

Fig. 4.101: CircuitHub quote generation

much markup you need to be paid for your work and launch the campaign to the public. Money is only
collected if and when the desired target quantity is reached, so there’s no risk that the boards will cost
too much to be affordable. This is a great way to cost-effectively launch your boards to market!

There’s no real substitute for getting to know your contract manufacturer, its capabilities, communication
style, strengths, and weaknesses. Look around your town to see if anyone is doing this type of work and
see if they’ll give you a tour.

Note: Don’t confuse CircuitHub and CircuitCo. CircuitCo is closed.

4.1.10 Parts and Suppliers

The following tables list where you can find the parts used in this book. We have listed only one or two
sources here, but you can often find a given part in many places.

Table 4.7: United States suppliers
Supplier Website Notes
Adafruit http://www.adafruit.com Good for modules and parts
Amazon http://www.amazon.com/ Carries everything
Digikey http://www.digikey.com/ Wide range of components
MakerShed http://www.makershed.com/ Good for modules, kits, and tools
RadioShack http://www.radioshack.com/ Walk-in stores
SeeedStudio http://www.seeedstudio.com/depot/ Low-cost modules
SparkFun http://www.sparkfun.com Good for modules and parts

4.1. BeagleBone Cookbook 337

http://www.adafruit.com
http://www.amazon.com/
http://www.digikey.com/
http://www.makershed.com/
http://www.radioshack.com/
http://www.seeedstudio.com/depot/
http://www.sparkfun.com

BeagleBoard Docs, Release 0.0.9

Table 4.8: Other suppliers
Sup-
plier

Website Notes

Ele-
ment14

http://element14.com/
BeagleBone

World-wide BeagleBoard.org-compliant clone of BeagleBone
Black, carries many accessories

Prototyping Equipment

Many of the hardware projects in this book use jumper wires and a breadboard. We prefer the pre-
formed wires that lie flat on the board. <<parts_jumper>> lists places with jumper wires, and
<<parts_breadboard>> shows where you can get breadboards.

Table 4.9: Jumper wires
Supplier Website
Amazon http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
Digikey http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
Ra-
dioShack

http://www.radioshack.com/solderless-breadboard-jumper-wire-kit/2760173.html#
.VG5i1PnF8fA

SparkFun https://www.sparkfun.com/products/124

Table 4.10: Breadboards
Sup-
plier

Website

Ama-
zon

http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&
field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games

Digikey http://www.digikey.com/product-search/en/prototyping-products/
solderless-breadboards/2359510?k=breadboard

Ra-
dioShack

http://www.radioshack.com/search?q=breadboard

Spark-
Fun

https://www.sparkfun.com/search/results?term=breadboard

Cir-
cuitCo

http://elinux.org/CircuitCo:BeagleBone_Breadboard

If you want something more permanent, try Adafruit’s Perma-Proto Breadboard, laid out like a bread-
board.

Resistors

We use 220 , 1k, 4.7k, 10k, 20k, and 22k resistors in this book. All are 0.25 W. The easiest way to get all
these, and many more, is to order SparkFun’s Resistor Kit. It’s a great way to be ready for future projects,
because it has 500 resistors. RadioShack’s 500-piece Resistor Assortment is a bit more expensive, but it
has a wider variety of resistors.

If you don’t need an entire kit of resistors, you can order a la carte from a number of places. RadioShack
has 5-packs, and DigiKey has more than a quarter million through-hole resistors at good prices, but make
sure you are ordering the right one.

You can find the 10 k trimpot (or variable resistor) at SparkFun 10k POT, Adafruit 10k POT, or Ra-
dioShack 10k POT.

Flex resistors (sometimes called flex sensors or bend sensors) are available at SparkFun flex resistors and
Adafruit flex resistors.

338 Chapter 4. Books

http://element14.com/BeagleBone
http://element14.com/BeagleBone
http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
http://www.radioshack.com/solderless-breadboard-jumper-wire-kit/2760173.html#.VG5i1PnF8fA
http://www.radioshack.com/solderless-breadboard-jumper-wire-kit/2760173.html#.VG5i1PnF8fA
https://www.sparkfun.com/products/124
http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
http://www.digikey.com/product-search/en/prototyping-products/solderless-breadboards/2359510?k=breadboard
http://www.digikey.com/product-search/en/prototyping-products/solderless-breadboards/2359510?k=breadboard
http://www.radioshack.com/search?q=breadboard
https://www.sparkfun.com/search/results?term=breadboard
http://elinux.org/CircuitCo:BeagleBone_Breadboard
https://www.adafruit.com/product/1609
http://bit.ly/1EXREh8
http://shack.net/1B4Io4V
http://shack.net/1E5NoIC
http://shack.net/1E5NoIC
http://bit.ly/1C6WQjZ
http://bit.ly/18ACvpm
http://bit.ly/1NKg1Tv
http://shack.net/1Ag286e
http://shack.net/1Ag286e
http://bit.ly/1Br7HD2
http://bit.ly/1HCGoql

BeagleBoard Docs, Release 0.0.9

Transistors and Diodes

The 2N3904 is a common NPN transistor that you can get almost anywhere. Even Amazon NPN transitor
has it. Adafruit NPN transitor has a nice 10-pack. SparkFun NPN transitor lets you buy them one at a
time. DigiKey NPN transitor will gladly sell you 100,000.

The 1N4001 is a popular 1A diode. Buy one at SparkFun diode, 10 at Adafruit diode, 25 at RadioShack
diode, or 40,000 at DigiKey diode.

Integrated Circuits

The PCA9306 is a small integrated circuit (IC) that converts voltage levels between 3.3 V and 5 V. You
can get it cheaply in large quantities from DigiKey PCA9306, but it’s in a very small, hard-to-use, surface-
mount package. Instead, you can get it from SparkFun PCA9306 on a Breakout board, which plugs into
a breadboard.

The L293D is an H-bridge IC with which you can control large loads (such as motors) in both directions.
SparkFun L393D, Adafruit L393D, and DigiKey L393D all have it in a DIP package that easily plugs into
a breadboard.

The ULN2003 is a 7 darlington NPN transistor IC array used to drive motors one way. You can get it from
DigiKey ULN2003. A possible substitution is ULN2803 available from SparkFun ULN2003 and Adafruit
ULN2003.

The TMP102 is an I^2^C-based digital temperature sensor. You can buy them in bulk from DigiKey
TMP102, but it’s too small for a breadboard. SparkFun TMP102 sells it on a breakout board that works
well with a breadboard.

The DS18B20 is a one-wire digital temperature sensor that looks like a three-terminal transistor. Both
SparkFun DS18B20 and Adafruit DS18B20 carry it.

Opto-Electronics

LEDs are light-emitting diodes. LEDs come in a wide range of colors, brightnesses, and styles. You can
get a basic red LED at SparkFun red LED, Adafuit red LED, RadioShack red LED, and DigiKey red LED.

Many places carry bicolor LED matrices, but be sure to get one with an I^2^C interface. Adafruit LED
matrix is where I got mine.

Capes

There are a number of sources for capes for BeagleBone Black. eLinux.org BeagleBoard.org capes page
keeps a current list.

Miscellaneous

Here are some things that don’t fit in the other categories.

Table 4.11: Miscellaneous
3.3 V FTDI cable SparkFun FTDI cable, Adafruit FTDI cable
USB WiFi adapter Adafruit WiFi adapter
Female HDMI to male microHDMI adapter Amazon HDMI to microHDMI adapter
HDMI cable SparkFun HDMI cable
Micro HDMI to HDMI cable Adafruit HDMI to microHDMI cable
HDMI to DVI Cable SparkFun HDMI to DVI cable
HDMI monitor Amazon HDMI monitor

continues on next page

4.1. BeagleBone Cookbook 339

http://bit.ly/1B4J8H4
http://amzn.to/1AjvcsD
http://bit.ly/1b2dgxT
http://bit.ly/1GrZj5P
http://bit.ly/1GF8H9K
http://bit.ly/1EbRzF6
http://bit.ly/1Ajw54G
http://bit.ly/1Gs05zP
http://shack.net/1E5OTXi
http://shack.net/1E5OTXi
http://bit.ly/18ADlT2
http://bit.ly/1Fb8REd
http://bit.ly/19ceTsd
http://bit.ly/1wujQqk
http://bit.ly/18bXChR
http://bit.ly/1xd43Yh
http://bit.ly/18bXKOk
http://bit.ly/1D5UQIB
http://bit.ly/1xd4oKy
http://bit.ly/1EXWhaU
http://bit.ly/1EXWhaU
http://bit.ly/1EA02Vx
http://bit.ly/1EA02Vx
http://bit.ly/1GFafAE
http://bit.ly/1Fba7Hv
http://bit.ly/1EbSYvC
http://bit.ly/1BwZvQj
http://bit.ly/1GFaHPi
http://bit.ly/1GFaH1M
http://shack.net/1KWVVGE
http://bit.ly/1b2f2PD
http://bit.ly/18AENVn
http://bit.ly/18AENVn
http://bit.ly/1AjlXJ9
http://bit.ly/1FMeXsG
http://bit.ly/18AF1Mm
http://www.adafruit.com/products/814
http://amzn.to/1C5BcLp
https://www.sparkfun.com/products/11572
http://www.adafruit.com/products/1322
https://www.sparkfun.com/products/12612
http://amzn.to/1B4MABD

BeagleBoard Docs, Release 0.0.9

Table 4.11 – continued from previous page
Powered USB hub Amazon power USB hub, Adafruit power USB hub
Keyboard with USB hub Amazon keyboard with USB hub
Soldering iron SparkFun soldering iron, Adafruit soldering iron
Oscilloscope Adafruit oscilloscope
Multimeter SparkFun multimeter, Adafruit multimeter
PowerSwitch Tail II SparkFun PowerSwitch Tail II, Adafruit PowerSwitch Tail II
Servo motor SparkFun servo motor, Adafruit servo motor
5 V power supply SparkFun 5V power supply, Adafruit 5V power supply
3 V to 5 V motor SparkFun 3V-5V motor, Adafruit 3V-5V motor
3 V to 5 V bipolar stepper motor SparkFun 3V-5V bipolar stepper motor, Adafruit 3V-5V bipolar stepper motor
3 V to 5 V unipolar stepper motor Adafruit 3V-5V unipolar stepper motor
Pushbutton switch SparkFun pushbutton switch, Adafruit pushbutton switch
Magnetic reed switch SparkFun magnetic reed switch
LV-MaxSonar-EZ1 Sonar Range Finder SparkFun LV-MaxSonar-EZ1, Amazon LV-MaxSonar-EZ1
HC-SR04 Ultrsonic Range Sensor Amazon HC-SR04
Rotary encoder SparkFun rotary encoder, Adafruit rotary encoder
GPS receiver SparkFun GPS, Adafruit GPS
BLE USB dongle Adafruit BLE USB dongle
SensorTag DigiKey SensorTag, Amazon SensorTag, TI SensorTag
Syba SD-CM-UAUD USB Stereo Audio Adapter Amazon USB audio adapter
Sabrent External Sound Box USB-SBCV Amazon USB audio adapter (alt)
Vantec USB External 7.1 Channel Audio Adapter Amazon USB audio adapter (alt2)
Nokia 5110 LCD Adafruit 5110 LCD, SparkFun 5110 LCD
BeagleBone LCD7 eLinux LCD7
MiniDisplay Cape eLinux minidisplay

4.2 PRU Cookbook

Contributors

• Author: Mark A. Yoder

• Book revision: v2.0 beta

Outline

A cookbook for programming the PRUs in C using remoteproc and compiling on the Beagle

4.2.1 Case Studies - Introduction

It’s an exciting time to be making projects that use embedded processors. Make:’s Makers’ Guide to
Boards shows many of the options that are available and groups them into different types. Single board
computers (SBCs) generally run Linux on some sort of ARM processor. Examples are the BeagleBoard
and the Raspberry Pi. Another type is the microcontroller, of which the Arduino is popular.

The SBCs are used because they have an operating system to manage files, I/O, and schedule when things
are run, all while possibly talking to the Internet. Microcontrollers shine when things being interfaced
require careful timing and can’t afford to have an OS preempt an operation.

But what if you have a project that needs the flexibility of an OS and the timing of a microcon-
troller? This is where the BeagleBoard excels since it has both an ARM procssor running Linux and
two1 Programmable Real-Time Units (PRUs). The PRUs have 32-bit cores which run independently of

1 Four if you are on the BeagleBone AI

340 Chapter 4. Books

http://amzn.to/1NKm2zB
http://www.adafruit.com/products/961
http://amzn.to/1FbblSX
http://bit.ly/1FMfUkP
http://bit.ly/1EXZ6J1
https://www.adafruit.com/products/468
http://bit.ly/1C5BUbu
http://bit.ly/1wXX3np
http://bit.ly/1Ag5bLP
http://bit.ly/1wXX8aF
http://bit.ly/1C72cvw
http://bit.ly/1HCPQdl
http://bit.ly/1C72q5C
http://bit.ly/18c0n2D
http://bit.ly/1b2g65Y
http://bit.ly/1C72DWF
http://bit.ly/1Bx2hVU
http://bit.ly/18c0HhV
http://www.adafruit.com/products/858
http://bit.ly/1AjDf90
http://bit.ly/1b2glhw
https://www.sparkfun.com/products/8642
http://bit.ly/1C73dDH
http://amzn.to/1wXXvlP
http://amzn.to/1FbcPNa
http://bit.ly/1D5ZypK
http://bit.ly/1D5ZGp3
http://bit.ly/1EA2sn0
http://bit.ly/1MrS2VV
http://www.adafruit.com/products/1327
http://bit.ly/18AGPVt
http://amzn.to/1EA2B9U
https://store.ti.com/CC2541-SensorTag-Development-Kit-P3192.aspx
http://amzn.to/1EA2GdI
http://amzn.to/1C74kTU
http://amzn.to/19cinev
http://bit.ly/1Ag6LgG
http://bit.ly/19cizdu
http://elinux.org/CircuitCo:BeagleBone_LCD7#Distributors
http://elinux.org/CircuitCo:MiniDisplay_Cape
mailto:Mark.A.Yoder@Rose-Hulman.edu
https://makezine.com/comparison/boards/
https://makezine.com/comparison/boards/
https://www.arm.com/
https://www.arduino.cc/

BeagleBoard Docs, Release 0.0.9

the ARM processor, therefore they can be programmed to respond quickly to inputs and produce very
precisely timed outputs.

There are many Projects that use the PRU. They are able to do things that can’t be done with just a SBC or
just a microcontroller. Here we present some case studies that give a high-level view of using the PRUs.
In later chapters you will see the details of how they work.

Here we present:

• Robotics Control Library

• BeagleLogic

• NeoPixels – 5050 RGB LEDs with Integrated Drivers (Falcon Christmas)

• RGB LED Matrix (Falcon Christmas)

• simpPRU – A python-like language for programming the PRUs

• MachineKit

• BeaglePilot

• BeagleScope

The following are resources used in this chapter.

Resources

• Pocket Beagle System Reference Manual

• BeagleBone Black P8 Header Table

– P8 Header Table from exploringBB

• BeagleBone Black P9 Header Table

– P9 Header Table from exploringBB

• BeagleBone AI System Reference Manual

Robotics Control Library

Robotics is an embedded application that often requires both an SBC to control the high-level tasks (such
as path planning, line following, communicating with the user) and a microcontroller to handle the low-
level tasks (such as telling motors how fast to turn, or how to balance in response to an IMU input). The
EduMIP balancing robot demonstrates that by using the PRU, the Blue can handle both the high and low
-level tasks without an additional microcontroller. The EduMIP is shown in Blue balancing.

The Robotics Control Library is a package that is already installed on the Beagle that contains a C library
and example/testing programs. It uses the PRU to extend the real-time hardware of the Bone by adding
eight addional servo channels and one addition real-time encoder input.

The following examples show how easy it is to use the PRU for robotics.

Controlling Eight Servos

Problem You need to control eight servos, but the Bone doesn’t have enough pulse width modulation
(PWM) channels and you don’t want to add hardware.

4.2. PRU Cookbook 341

https://beagleboard.org/librobotcontrol
https://github.com/abhishek-kakkar/BeagleLogic/wiki
http://falconchristmas.com
http://falconchristmas.com
https://github.com/VedantParanjape/simpPRU
http://www.machinekit.io/
http://ardupilot.org/dev/docs/beaglepilot.html
https://github.com/ZeekHuge/BeagleScope
https://docs.beagleboard.io/latest/boards/pocketbeagle/original/index.html
https://docs.beagleboard.io/latest/boards/beaglebone/black/ch07.html#id2
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf
https://docs.beagleboard.io/latest/boards/beaglebone/black/ch07.html#id3
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf
https://docs.beagleboard.io/latest/boards/beaglebone/ai/index.html
https://www.ucsdrobotics.org/edumip
https://www.hackster.io/edumip/edumip-13a29c
https://beagleboard.org/librobotcontrol

BeagleBoard Docs, Release 0.0.9

Fig. 4.102: Blue balancing

342 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Solution The Robotics Control Library provides eight additional PWM channels via the PRU that can
be used out of the box.

Note: The I/O pins on the Beagles have a mutliplexer that lets you select what I/O appears on a given
pin. The Blue has the mux already configured to to run these examples. Follow the instructions in
Configuring Pins for Controlling Servos to configure the pins for the Black and the Pocket.

Just run:

bone$ sudo rc_test_servos -f 10 -p 1.5

The -f 10 says to use a frequency of 10 Hz and the -p 1.5 says to set the position to 1.5. The range of
positions is -1.5 to 1.5. Run rc_test_servos -h to see all the options.

bone$ rc_test_servos -h

Options
-c {channel} Specify one channel from 1-8.

Otherwise all channels will be driven equally
-f {hz} Specify pulse frequency, otherwise 50hz is used
-p {position} Drive servo to a position between -1.5 & 1.5
-w {width_us} Send pulse width in microseconds (us)
-s {limit} Sweep servo back/forth between +- limit

Limit can be between 0 & 1.5
-r {ch} Use DSM radio channel {ch} to control servo
-h Print this help messege

sample use to center servo channel 1:
rc_test_servo -c 1 -p 0.0

Discussion The BeagleBone Blue sends these eight outputs to it’s servo channels. The others use the
pins shown in the PRU register to pin table.

PRU register to pin table
PRU pin Blue pin Black pin Pocket pin AI pin
pru1_r30_8 1 P8_27 P2.35
pru1_r30_10 2 P8_28 P1.35 P9_42
pru1_r30_9 3 P8_29 P1.02 P8_14
pru1_r30_11 4 P8_30 P1.04 P9_27
pru1_r30_6 5 P8_39 P8_19
pru1_r30_7 6 P8_40 P8_13
pru1_r30_4 7 P8_41
pru1_r30_5 8 P8_42 P8_18

You can find these details in the

• Pocket Beagle pinout

• BeagleBone AI PRU pins

Be default the PRUs are already loaded with the code needed to run the servos. All you have to do is run
the command.

Controlling Individual Servos

Problem rc_test_servos is nice, but I need to control the servos individually.

4.2. PRU Cookbook 343

https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

BeagleBoard Docs, Release 0.0.9

Solution You can modify rc_test_servos.c. You’ll find it on the bone online at https://github.com/
beagleboard/librobotcontrol/blob/master/examples/src/rc_test_servos.c.

Just past line 250 you’ll find a while loop that has calls to rc_servo_send_pulse_normalized(ch,
servo_pos) and rc_servo_send_pulse_us(ch, width_us). The first call sets the pulse width relative
to the pulse period; the other sets the width to an absolute time. Use whichever works for you.

Controlling More Than Eight Channels

Problem I need more than eight PWM channels, or I need less jitter on the off time.

Solution This is a more advanced problem and required reprograming the PRUs. See PWM Generator
for an example.

Reading Hardware Encoders

Problem I want to use four encoders to measure four motors, but I only see hardware for three.

Solution The forth encoder can be implemented on the PRU. If you run rc_test_encoders_eqep on
the Blue, you will see the output of encoders E1-E3 which are connected to the eEQP hardware.

bone$ *rc_test_encoders_eqep*

Raw encoder positions
E1 | E2 | E3 |

0 | 0 | 0 |^C

You can also access these hardware encoders on the Black and Pocket using the pins shown in eQEP to
pin mapping.

eQEP to pin mapping

eQEP Blue pin Black pin A Black pin B AI pin A AI pin B Pocket pin A Pocket pin B
0 E1 P9_42B P9_27 P1.31 P2.24
1 E2 P8_35 P8_33 P8_35 P8_33 P2.10
2 E3 P8_12 P8_11 P8_12 P8_11 P2.24 P2.33
2 P8_41 P8_42 P9_19 P9_41

E4 P8_16 P8_15 P2.09 P2.18
3 P8_25 P8_24
3 P9_42 P9_27

Note: The I/O pins on the Beagles have a mutliplexer that lets you select what I/O appears on a given
pin. The Blue has the mux already configured to to run these examples. Follow the instructions in
Configuring Pins for Controlling Encoders to configure the pins for the Black and the Pocket.

Reading PRU Encoder

Problem I want to access the PRU encoder.

344 Chapter 4. Books

https://github.com/beagleboard/librobotcontrol/blob/master/examples/src/rc_test_servos.c
https://github.com/beagleboard/librobotcontrol/blob/master/examples/src/rc_test_servos.c

BeagleBoard Docs, Release 0.0.9

Solution The forth encoder is implemented on the PRU and accessed with sudo rc_test_encoders_pru

Note: This command needs root permission, so the sudo is needed.

Here’s what you will see

bone$ *sudo rc_test_encoders_pru*
[sudo] password for debian:

Raw encoder position
E4 |

0 |^C

Note: If you aren’t running the Blue you will have to configure the pins as shown in the note above.

BeagleLogic – a 14-channel Logic Analyzer

Problem I need a 100Msps, 14-channel logic analyzer

Solution BeagleLogic documentation is a 100Msps, 14-channel logic analyzer that runs on the Beagle.

information

BeagleLogic turns your BeagleBone [Black] into a 14-channel, 100Msps Logic Analyzer. Once loaded, it
presents itself as a character device node /dev/beaglelogic. The core of the logic analyzer is the ‘beaglel-
ogic’ kernel module that reserves memory for and drives the two Programmable Real-Time Units (PRU)
via the remoteproc interface wherein the PRU directly writes logic samples to the System Memory (DDR
RAM) at the configured sample rate one-shot or continuously without intervention from the ARM core.

https://github.com/abhishek-kakkar/BeagleLogic/wiki

The quickest solution is to get the no-setup-required image. It points to an older image (beaglelogic-
stretch-2017-07-13-4gb.img.xz) but should still work.

If you want to be running a newer image, there are instructions on the site for installing BeagleLogic,
but I had to do the additional steps in Installing BeagleLogic.

Listing 4.63: Installing BeagleLogic
bone$ *git clone https://github.com/abhishek-kakkar/BeagleLogic*
bone$ *cd BeagleLogic/kernel*
bone$ *mv beaglelogic-00A0.dts beaglelogic-00A0.dts.orig*
bone$ *wget https://gist.githubusercontent.com/abhishek-kakkar/
→˓0761ef7b10822cff4b3efd194837f49c/raw/eb2cf6cfb59ff5ccb1710dcd7d4a40cc01cfc050/
→˓beaglelogic-00A0.dts*
bone$ *make overlay*
bone$ *sudo cp beaglelogic-00A0.dtbo /lib/firmware/*
bone$ *sudo update-initramfs -u -k \`uname -r`*
bone$ *sudo reboot*

Once the Bone has rebooted, browse to 192.168.7.2:4000 where you’ll see BeagleLogic Data Capture.
Here you can easily select the sample rate, number of samples, and which pins to sample. Then click
Begin Capture to capture your data, at up to 100 MHz!

4.2. PRU Cookbook 345

https://beaglelogic.readthedocs.io/en/latest/
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/abhishek-kakkar/BeagleLogic/wiki/BeagleLogic-%22no-setup-required%22-setup:-Introducing-System-Image!
https://beaglelogic.readthedocs.io/en/latest/install.html

BeagleBoard Docs, Release 0.0.9

Fig. 4.103: BeagleLogic Data Capture

Discussion BeagleLogic is a complete system that includes firmware for the PRUs, a kernel module and
a web interface that create a powerful 100 MHz logic analyzer on the Bone with no additional hardware
needed.

Tip: If you need buffered inputs, consider BeagleLogic Standalone, a turnkey Logic Analyzer built on
top of BeagleLogic.

The kernel interface makes it easy to control the PRUs through the command line. For example

bone$ *dd if=/dev/beaglelogic of=mydump bs=1M count=1*

will capture a binary dump from the PRUs. The sample rate and number of bits per sample can be
controlled through /sys/.

bone$ *cd /sys/devices/virtual/misc/beaglelogic*
bone$ *ls*
buffers filltestpattern power state uevent
bufunitsize lasterror samplerate subsystem
dev memalloc sampleunit triggerflags
bone$ *cat samplerate*
1000
bone$ *cat sampleunit*
8bit

You can set the sample rate by simply writing to samplerate.

bone$ *echo 100000000 > samplerate*

sysfs attributes Reference has more details on configuring via sysfs.

If you run dmesg -Hw in another window you can see when a capture is started and stopped.

346 Chapter 4. Books

http://standalone.beaglelogic.net/en/latest/
https://beaglelogic.readthedocs.io/en/latest/sysfs_attributes.html

BeagleBoard Docs, Release 0.0.9

bone$ *dmesg -Hw*
[Jul25 08:46] misc beaglelogic: capture started with sample rate=100000000 Hz,␣
→˓sampleunit=1, triggerflags=0
[+0.086261] misc beaglelogic: capture session ended

BeagleLogic uses the two PRUs to sample at 100Msps. Getting a PRU running at 200Hz to sample at
100Msps is a slick trick. The Embedded Kitchen has a nice article explaining how the PRUs get this type
of performance.

NeoPixels – 5050 RGB LEDs with Integrated Drivers (Falcon Christmas)

Problem You have an Adafruit NeoPixel LED string, Adafruit NeoPixel LED matrix or any other type of
WS2812 LED and want to light it up.

Solution If you are driving just one string you can write your own code (See WS2812 (NeoPixel) driver)
If you plan to drive multiple strings, then consider Falcon Christmas (FPP). FPP can be used to drive both
LEDs with an integrated driver (neopixels) or without an integrated driver. Here we’ll show you how to
set up for the integrated drive and in the next section the no driver LEDs will be show.

Hardware For this setup we’ll wire a single string of NeoPixels to the Beagle. I’ve attached the black
wire on the string to ground on the Beagle and the red wire to a 3.3V pin on the Beagle. The yellow data
in line is attached to P1.31 (I’m using a PocketBeagle.).

How did I know to attach to P1.31? The FalconChristmas git repo (https://github.com/FalconChristmas/
fpp) has files that tell which pins attach to which port. https://github.com/FalconChristmas/fpp/blob/
master/capes/pb/strings/F8-B-20.json has a list of 20 ports and where they are connected. Pin P1.31
appears on line 27. It’s the 20th entry in the list. You could pick any of the others if you’d rather.

Software Setup Assuming the PocketBeagle is attached via the USB cable, on your host computer
browse to <http://192.168.7.2/> and you will see Falcon Play Program Control.

You can test the display by first setting up the Channel Outputs and then going to Display Testing. Selecting
Channel Outputs shows where to select Channel Outputs and Channel Outputs Settings shows which
settings to use.

Click on the Pixel Strings tab. Earlier we noted that P1.31 is attached to port 20. Note that at the bottom
of the screen, port 20 has a PIXEL COUNT of 24. We’re telling FPP our string has 24 NeoPixels and they
are attached to port 2 which in P1.31.

Be sure to check the Enable String Cape.

Next we need to test the display. Select Display Testing shown in Selecting Display Testing.

Set the End Channel to 72. (72 is 3*24) Click Enable Test Mode and your matrix should light up. Try the
different testing patterns shown in Display Testing Options.

Note: Clicking on the -3 will subtract three from the End Channel, which should then display three
fewer LEDs which is one NeoPixel. The last of your NeoPixels should go black. This is an easy way to
make sure you have the correct pixel count.

You can control the LED string using the E1.31 protocol. (https://www.doityourselfchristmas.com/wiki/
index.php?title=E1.31_(Streaming-ACN)_Protocol) First configure the input channels by going to Chan-
nel Inputs as shown in Going to Channel Inputs.

Tell it you have 72 LEDs and enable the input as shown in Setting Channel Inputs.

Finally go to the Status Page as shown in Watching the status.

4.2. PRU Cookbook 347

http://theembeddedkitchen.net/beaglelogic-building-a-logic-analyzer-with-the-prus-part-1/449
http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://falconchristmas.com/
https://github.com/FalconChristmas/fpp
https://github.com/FalconChristmas/fpp
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/strings/F8-B-20.json
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/strings/F8-B-20.json
http://192.168.7.2/
https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol
https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol

BeagleBoard Docs, Release 0.0.9

Fig. 4.104: Falcon Play Program Control

348 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.105: Selecting Channel Outputs

Now run a program on another computer that generated E1.31 packets. e1.31-test.py -Example of gener-
ating packets to control the NeoPixels is an example python program.

Listing 4.64: e1.31-test.py -Example of generating packets to con-
trol the NeoPixels

1 #!/usr/bin/env python3
2 # Controls a NeoPixel (WS2812) string via E1.31 and FPP
3 # https://pypi.org/project/sacn/
4 # https://github.com/FalconChristmas/fpp/releases
5 import sacn
6 import time
7

8 # provide an IP-Address to bind to if you are using Windows and want to use multicast
9 sender = sacn.sACNsender("192.168.7.1")

10 sender.start() # start the␣
→˓sending thread

11 sender.activate_output(1) # start sending out data in the 1st universe
12 sender[1].multicast = False # set multicast to True
13 sender[1].destination = "192.168.7.2" # or provide unicast information.
14 sender.manual_flush = True # turning off the automatic sending of packets
15 # Keep in mind that if multicast is on, unicast is not used
16 LEDcount = 24
17 # Have green fade is as it goes
18 data = []
19 for i in range(LEDcount):
20 data.append(0) # Red
21 data.append(i) # Green
22 data.append(0) # Blue
23 sender[1].dmx_data = data

(continues on next page)

4.2. PRU Cookbook 349

BeagleBoard Docs, Release 0.0.9

Fig. 4.106: Channel Outputs Settings

350 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.107: Selecting Display Testing

Fig. 4.108: Display Testing Options

4.2. PRU Cookbook 351

BeagleBoard Docs, Release 0.0.9

Fig. 4.109: Going to Channel Inputs

Fig. 4.110: Setting Channel Inputs

352 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.111: Watching the status

(continued from previous page)

24 sender.flush()
25 time.sleep(0.5)
26

27 # Turn off all LEDs
28 data=[]
29 for i in range(3*LEDcount):
30 data.append(0)
31 sender.flush()
32 sender[1].dmx_data = data
33 time.sleep(0.5)
34

35 # Have red fade in
36 data = []
37 for i in range(LEDcount):
38 data.append(i)
39 data.append(0)
40 data.append(0)
41 sender[1].dmx_data = data
42 sender.flush()
43 time.sleep(0.25)
44

45 # Make LED circle 5 times
46 for j in range(15):
47 for i in range(LEDcount-1):
48 data[3*i+0] = 0
49 data[3*i+1] = 0
50 data[3*i+2] = 0
51 data[3*i+3] = 0
52 data[3*i+4] = 64
53 data[3*i+5] = 0
54 sender[1].dmx_data = data
55 sender.flush()
56 time.sleep(0.02)
57 # Wrap around

(continues on next page)

4.2. PRU Cookbook 353

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

58 i = LEDcount-1
59 data[0] = 0
60 data[1] = 64
61 data[2] = 0
62 data[3*i+0] = 0
63 data[3*i+1] = 0
64 data[3*i+2] = 0
65 sender[1].dmx_data = data
66 sender.flush()
67 time.sleep(0.02)
68

69 time.sleep(2) # send the data for 10 seconds
70 sender.stop() # do not forget to stop the sender

e1.31-test.py

RGB LED Matrix – No Integrated Drivers (Falcon Christmas)

Problem You want to use a RGB LED Matrix display that doesn’t have integrated drivers such as the
64x32 RGB LED Matrix by Adafuit shown in Adafruit LED Matrix.

Fig. 4.112: Adafruit LED Matrix

Solution Falcon Christmas makes a software package called Falcon Player (FPP) which can drive such
displays.

information:

The Falcon Player (FPP) is a lightweight, optimized, feature-rich sequence player designed to run on
low-cost SBC’s (Single Board Computers). FPP is a software solution that you download and install
on hardware which can be purchased from numerous sources around the internet. FPP aims to be
controller agnostic, it can talk E1.31, DMX, Pixelnet, and Renard to hardware from multiple hardware
vendors, including controller hardware from Falcon Christmas available via COOPs or in the store on
FalconChristmas.com.

http://www.falconchristmas.com/wiki/FPP:FAQ#What_is_FPP.3F

354 Chapter 4. Books

https://www.adafruit.com/product/2277
http://falconchristmas.com
http://falconchristmas.com/forum/index.php/board,8.0.html
http://www.falconchristmas.com/wiki/FPP:FAQ#What_is_FPP.3F

BeagleBoard Docs, Release 0.0.9

Hardware The Beagle hardware can be either a BeagleBone Black with the Octoscroller Cape, or a
PocketBeagle with the PocketScroller LED Panel Cape. (See to purchase.) Building and Octoscroller
Matrix Display gives details for using the BeagleBone Black.

Pocket Beagle Driving a P5 RGB LED Matrix via the PocketScroller Cape shows how to attach the Pocket-
Beagle to the P5 LED matrix and where to attach the 5V power. If you are going to turn on all the LEDs
to full white at the same time you will need at least a 4A supply.

Fig. 4.113: Pocket Beagle Driving a P5 RGB LED Matrix via the PocketScroller Cape

Software The FPP software is most easily installed by downloading the current FPP release, flashing
an SD card and booting from it.

Tip: The really brave can install it on a already running image. See details at https://github.com/
FalconChristmas/fpp/blob/master/SD/FPP_Install.sh

Assuming the PocketBeagle is attached via the USB cable, on your host computer browse to http://192.
168.7.2/ and you will see Falcon Play Program Control.

You can test the display by first setting up the Channel Outputs and then going to Display Testing. Selecting
Channel Outputs shows where to select Channel Outputs and Channel Outputs Settings shows which
settings to use.

Click on the LED Panels tab and then the only changes I made was to select the Single Panel Size to be
64x32 and to check the Enable LED Panel Output.

Next we need to test the display. Select Display Testing shown in Selecting Display Testing.

Set the End Channel to 6144. (6144 is 3*64*32) Click Enable Test Mode and your matrix should light
up. Try the different testing patterns shown in Display Testing Options.

xLights - Creating Content for the Display Once you are sure your LED Matrix is working correctly
you can program it with a sequence.

information:

4.2. PRU Cookbook 355

https://oshpark.com/shared_projects/7mSHNZcD
https://www.hackster.io/daniel-kulp/pocketscroller-led-panel-cape-for-pocketbeagle-fe12a6
https://kulplights.com/product/pocketscroller/
https://www.diychristmas.org/wiki/index.php?title=Building_an_Octoscroller_Matrix_Display
https://www.diychristmas.org/wiki/index.php?title=Building_an_Octoscroller_Matrix_Display
https://github.com/FalconChristmas/fpp/releases/
https://github.com/FalconChristmas/fpp/blob/master/SD/FPP_Install.sh
https://github.com/FalconChristmas/fpp/blob/master/SD/FPP_Install.sh
http://192.168.7.2/
http://192.168.7.2/

BeagleBoard Docs, Release 0.0.9

Fig. 4.114: Falcon Play Program Control

356 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.115: Selecting Channel Outputs

xLights is a free and open source program that enables you to design, create and play amazing lighting
displays through the use of DMX controllers, E1.31 Ethernet controllers and more.

With it you can layout your display visually then assign effects to the various items throughout your
sequence. This can be in time to music (with beat-tracking built into xLights) or just however you like.
xLights runs on Windows, OSX and Linux

https://xlights.org/

xLights can be installed on your host computer (not the Beagle) by following instructions at https://
xlights.org/releases/.

Run xLights and you’ll see xLights Setup.

host$ *chmod +x xLights-2021.18-x86_64.AppImage*
host$ *./xLights-2021.18-x86_64.AppImage*

We’ll walk you through a simple setup to get an animation to display on the RGB Matrix. xLights can use
a protocol called E1.31 to send information to the display. Setup xLights by clicking on Add Ethernet and
entering the values shown in Setting Up E1.31.

The IP Address is the Bone’s address as seen from the host computer. Each LED is one channel, so
one RGB LED is three channels. The P5 board has 3*64*32 or 6144 channels. These are grouped into
universes of 512 channels each. This gives 6144/512 = 12 universes. See the E.13 documentation for
more details.

Your setup should look like xLights setup for P5 display. Click the Save Setup button to save.

Next click on the Layout tab. Click on the Matrix button as shown in Setting up the Matrix Layout, then
click on the black area where you want your matrix to appear.

Layout details for P5 matrix shows the setting to use for the P5 matrix.

4.2. PRU Cookbook 357

https://xlights.org/
https://xlights.org/releases/
https://xlights.org/releases/
https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol#Configuring_Sequencing_Software_to_use_E1.31_Output

BeagleBoard Docs, Release 0.0.9

Fig. 4.116: Channel Outputs Settings

358 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.117: Selecting Display Testing

All I changed was # Strings, Nodes/String, Starting Location and most importantly, expand String
Properties and select at String Type of RGB Nodes. Above the setting you should see that Start Chan
is 1 and the End Chan is 6144, which is the total number of individual LEDs (3*63*32). xLights now
knows we are working with a P5 matrix, now on to the sequencer.

Now click on the Sequencer tab and then click on the New Sequence button (Starting a new sequence).

Then click on Animation, 20fps (50ms), and Quick Start. Learning how to do sequences is beyond the
scope of this cookbook, however I’ll shown you how do simple sequence just to be sure xLights is talking
to the Bone.

Setting Up E1.31 on the Bone First we need to setup FPP to take input from xLights. Do this by going
to the Input/Output Setup menu and selecting Channel Inputs. Then enter 12 for Universe Count and click
set and you will see E1.31 Inputs.

Click on the Save button above the table.

Then go to the Status/Control menu and select Status Page.

Testing the xLights Connection The Bone is now listening for commands from xLights via the E1.31
protocol. A quick way to verify everything is t o return to xLights and go to the Tools menu and select
Test (xLights test page).

Click the box under Select channels. . . , click Output to lights and select Twinkle 50%. You matrix
should have a colorful twinkle pattern (xLights Twinkle test pattern).

A Simple xLights Sequence Now that the xLights to FPP link is tested you can generate a sequence to
play. Close the Test window and click on the Sequencer tab. Then drag an effect from the Effects box
to the timeline that below it. Drop it to the right of the Matrix label (Drag an effect to the timeline). The

4.2. PRU Cookbook 359

BeagleBoard Docs, Release 0.0.9

Fig. 4.118: Display Testing Options

360 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.119: xLights Setup

Fig. 4.120: Setting Up E1.31

4.2. PRU Cookbook 361

BeagleBoard Docs, Release 0.0.9

Fig. 4.121: xLights setup for P5 display

Fig. 4.122: Setting up the Matrix Layout

362 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.123: Layout details for P5 matrix

Fig. 4.124: Starting a new sequence

4.2. PRU Cookbook 363

BeagleBoard Docs, Release 0.0.9

Fig. 4.125: E1.31 Inputs

364 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.126: Bridge Mode

4.2. PRU Cookbook 365

BeagleBoard Docs, Release 0.0.9

Fig. 4.127: xLights test page

Fig. 4.128: xLights Twinkle test pattern

366 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

click Output To Lights which is the yellow lightbulb to the right on the top toolbar. Your matrix should
now be displaying your effect.

Fig. 4.129: Drag an effect to the timeline

The setup requires the host computer to send the animation data to the Bone. The next section shows
how to save the sequence and play it on the Bone standalone.

Saving a Sequence and Playing it Standalone In xLights save your sequence by hitting Ctrl-S and
giving it a name. I called mine fire since I used a fire effect. Now, switch back to FPP and select the
Content Setup menu and select File Manager. Click the black Select Files button and select your sequence
file that ends in .fseq (FPP file manager).

Once your sequence is uploaded, got to Content Steup and select Playlists. Enter you playlist name (I
used fire) and click Add. Then click Add a Sequence/Entry and select Sequence Only (Adding a new
playlist to FPP), then click Add.

Be sure to click Save Playlist on the right. Now return to Status/Control and Status Page and make
sure FPPD Mode: is set to Standalone. You should see your playlist. Click the Play button and your
sequence will play.

The beauty of the PRU is that the Beagle can play a detailed sequence at 20 frames per second and the
ARM procossor is only 15% used. The PRUs are doing all the work.

simpPRU – A python-like language for programming the PRUs simpPRU is a simple, python-like
programming languge designed to make programming the PRUs easy. It has detailed documentation
and many examples.

information

simpPRU is a procedural programming language that is statically typed. Variables and functions must
be assigned data types during compilation. It is typesafe, and data types of variables are decided dur-

4.2. PRU Cookbook 367

https://github.com/VedantParanjape/simpPRU
https://simppru.readthedocs.io/en/latest/
https://simppru.readthedocs.io/en/latest/examples/digital_read/

BeagleBoard Docs, Release 0.0.9

Fig. 4.130: FPP file manager

368 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.131: Adding a new playlist to FPP

4.2. PRU Cookbook 369

BeagleBoard Docs, Release 0.0.9

Fig. 4.132: Adding a new playlist to FPP

370 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

ing compilation. simPRU codes have a +.sim+ extension. simpPRU provides a console app to use
Remoteproc functionality.

https://simppru.readthedocs.io/en/latest/

You can build simpPRU from source, more easily just install it. On the Beagle run:

bone$ wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/simppru-1.
→˓4-armhf.deb
bone$ sudo dpkg -i simppru-1.4-armhf.deb
bone$ sudo apt update
bone$ sudo apt install gcc-pru

Now, suppose you wanted to run the LED blink example which is reproduced here.

Listing 4.65: LED Blink (blink.sim)
1 /* From: https://simppru.readthedocs.io/en/latest/examples/led_blink/ */
2 while : 1 == 1 {
3 digital_write(P1_31, true);
4 delay(250); /* Delay 250 ms */
5 digital_write(P1_31, false);
6 delay(250);
7 }

blink.sim

Just run simppru

bone$ simppru blink.sim --load
Detected TI AM335x PocketBeagle
inside while
[4] : setting P1_31 as output

Current mode for P1_31 is: pruout

Detected TI AM335x PocketBeagle The +–load+ flag caused the compiled code to be copied to
+/lib/firmware+. To start just do:

bone$ cd /dev/remoteproc/pruss-core0/
bone$ ls
device firmware name power state subsystem uevent
bone$ echo start > state
bone$ cat state
running

Your LED should now be blinking.

Check out the many examples (https://simppru.readthedocs.io/en/latest/examples/led_blink/).

MachineKit MachineKit is a platform for machine control applications. It can control machine tools,
robots, or other automated devices. It can control servo motors, stepper motors, relays, and other devices
related to machine tools.

information

Machinekit is portable across a wide range of hardware platforms and real-time environments, and
delivers excellent performance at low cost. It is based on the HAL component architecture, an intuitive
and easy to use circuit model that includes over 150 building blocks for digital logic, motion, control

4.2. PRU Cookbook 371

https://simppru.readthedocs.io/en/latest/
https://simppru.readthedocs.io/en/latest/install/build/
https://simppru.readthedocs.io/en/latest/install/install/
https://simppru.readthedocs.io/en/latest/examples/led_blink/
https://simppru.readthedocs.io/en/latest/examples/led_blink/
http://www.machinekit.io/

BeagleBoard Docs, Release 0.0.9

Fig. 4.133: simpPRU Examples

loops, signal processing, and hardware drivers. Machinekit supports local and networked UI options,
including ubiquitous platforms like phones or tablets.

http://www.machinekit.io/about/

ArduPilot ArduPilot is a open source autopilot system supporting multi-copters, traditional helicopters,
fixed wing aircraft and rovers. ArduPilot runs on a many hardware platforms including the BeagleBone
Black and the BeagleBone Blue.

information

Ardupilot is the most advanced, full-featured and reliable open source autopilot software available. It
has been developed over 5+ years by a team of diverse professional engineers and computer scientists.
It is the only autopilot software capable of controlling any vehicle system imaginable, from conventional
airplanes, multirotors, and helicopters, to boats and even submarines. And now being expanded to
feature support for new emerging vehicle types such as quad-planes and compound helicopters.

Installed in over 1,000,000 vehicles world-wide, and with its advanced data-logging, analysis and simula-
tion tools, Ardupilot is the most tested and proven autopilot software. The open-source code base means
that it is rapidly evolving, always at the cutting edge of technology development. With many peripheral
suppliers creating interfaces, users benefit from a broad ecosystem of sensors, companion computers and
communication systems. Finally, since the source code is open, it can be audited to ensure compliance
with security and secrecy requirements.

The software suite is installed in aircraft from many OEM UAV companies, such as 3DR, jDrones, Preci-
sionHawk, AgEagle and Kespry. It is also used for testing and development by several large institutions
and corporations such as NASA, Intel and Insitu/Boeing, as well as countless colleges and universities
around the world.

http://www.machinekit.io/about/

372 Chapter 4. Books

http://www.machinekit.io/about/
http://ardupilot.org/
http://ardupilot.org/copter/docs/common-autopilots.html
http://ardupilot.org/dev/docs/building-for-beaglebone-black-on-linux.html#building-for-beaglebone-black-on-linux
http://ardupilot.org/dev/docs/building-for-beaglebone-black-on-linux.html#building-for-beaglebone-black-on-linux
http://ardupilot.org/copter/docs/common-beagle-bone-blue.html
http://www.machinekit.io/about/

BeagleBoard Docs, Release 0.0.9

4.2.2 Getting Started

We assume you have some experience with the Beagle and are here to learn about the PRU. This chapter
discusses what Beagles are out there, how to load the latest software image on your beagle, how to run
the Cloud9 IDE and how to blink an LED.

If you already have your Beagle and know your way around it, you can find the code (and the whole
book) on the PRU Cookbook github site: https://github.com/MarkAYoder/PRUCookbook.

Selecting a Beagle

Problem Which Beagle should you use?

Solution http://beagleboard.org/boards lists the many Beagles from which to choose. Here we’ll give
examples for the venerable BeagleBone Black, the robotics BeagleBone Blue, tiny PockeBeagle and the
powerful AI. All the examples should also run on the other Beagles too.

Discussion

BeagleBone Black If you aren’t sure which Beagle to use, it’s hard to go wrong with the BeagleBone
Black. It’s the most popular member of the open hardware Beagle family.

Fig. 4.134: BeagleBone Black

The Black has:

• AM335x 1GHz ARM® Cortex-A8 processor

• 512MB DDR3 RAM

• 4GB 8-bit eMMC on-board flash storage

• 3D graphics accelerator

• NEON floating-point accelerator

• 2x PRU 32-bit microcontrollers

• USB client for power & communications

• USB host

• Ethernet

• HDMI

• 2x 46 pin headers

See http://beagleboard.org/black for more details.

4.2. PRU Cookbook 373

https://github.com/MarkAYoder/PRUCookbook
http://beagleboard.org/boards
http://beagleboard.org/black
http://beagleboard.org/blue
http://beagleboard.org/pocket
http://beagleboard.org/ai
http://beagleboard.org/black
http://beagleboard.org/black
http://beagleboard.org/black

BeagleBoard Docs, Release 0.0.9

BeagleBone Blue The Blue is a good choice if you are doing robotics.

Fig. 4.135: BeagleBone Blue

The Blue has everything the Black has except it has no Ethernet or HDMI. But it also has:

• Wireless: 802.11bgn, Bluetooth 4.1 and BLE

• Battery support: 2-cell LiPo with balancing, LED state-of-charge monitor

• Charger input: 9-18V

• Motor control: 8 6V servo out, 4 bidirectional DC motor out, 4 quadrature encoder in

• Sensors: 9 axis IMU (accels, gyros, magnetometer), barometer, thermometer

• User interface: 11 user programmable LEDs, 2 user programmable buttons

In addition you can mount the Blue on the EduMIP kit as shown in BeagleBone Blue EduMIP Kit to get a
balancing robot.

https://www.hackster.io/53815/controlling-edumip-with-ni-labview-2005f8 shows how to assemble the
robot and control it from LabVIEW.

PocketBeagle The PocketBeagle is the smallest member of the Beagle family. It is an ultra-tiny-yet-
complete Beagle that is software compatible with the other Beagles.

The Pocket is based on the same processor as the Black and Blue and has:

• 8 analog inputs

• 44 digital I/Os and

• numerous digital interface peripherals

See http://beagleboard.org/pocket for more details.

BeagleBone AI If you want to do deep learning, try the BeagleBone AI.

The AI has:

• Dual Arm® Cortex®-A15 microprocessor subsystem

• 2 C66x floating-point VLIW DSPs

• 2.5MB of on-chip L3 RAM

• 2x dual Arm® Cortex®-M4 co-processors

• 4x Embedded Vision Engines (EVEs)

• 2x dual-core Programmable Real-Time Unit and Industrial Communication SubSystem (PRU-ICSS)

• 2D-graphics accelerator (BB2D) subsystem

• Dual-core PowerVR® SGX544™ 3D GPU

374 Chapter 4. Books

http://beagleboard.org/blue
https://www.renaissancerobotics.com/eduMIP.html
https://www.hackster.io/53815/controlling-edumip-with-ni-labview-2005f8
http://www.ni.com/en-us/shop/labview.html
http://beagleboard.org/pocket
http://beagleboard.org/pocket
http://beagleboard.org/ai

BeagleBoard Docs, Release 0.0.9

Fig. 4.136: BeagleBone Blue EduMIP Kit

Fig. 4.137: PocketBeagle

4.2. PRU Cookbook 375

BeagleBoard Docs, Release 0.0.9

Fig. 4.138: BeagleBone AI

• IVA-HD subsystem (4K @ 15fps encode and decode support for H.264, 1080p60 for others)

• BeagleBone Black mechanical and header compatibility

• 1GB RAM and 16GB on-board eMMC flash with high-speed interface

• USB type-C for power and superspeed dual-role controller; and USB type-A host

• Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth

• microHDMI

• Zero-download out-of-box software experience with Debian GNU/Linux

Installing the Latest OS on Your Bone

Problem You want to find the lastest version of Debian that is available for your Bone.

Solution On your host computer open a browser and go to http://beagleboard.org/latest-images.

This shows you two current choices of recent Debian images, one for the BeagleBone AI (AM5729 Debian
10.3 2020-04-06 8GB SD IoT TIDL) and one for all the other Beagles (AM3358 Debian 10.3 2020-04-06
4GB SD IoT). Download the one for your Beagle.

It contains all the packages we’ll need.

Flashing a Micro SD Card

Problem I’ve downloaded the image and need to flash my micro SD card.

376 Chapter 4. Books

http://beagleboard.org/latest-images
https://debian.beagleboard.org/images/am57xx-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz
https://debian.beagleboard.org/images/am57xx-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz
https://debian.beagleboard.org/images/bone-debian-10.3-iot-armhf-2020-04-06-4gb.img.xz
https://debian.beagleboard.org/images/bone-debian-10.3-iot-armhf-2020-04-06-4gb.img.xz

BeagleBoard Docs, Release 0.0.9

Fig. 4.139: Latest Debian images

4.2. PRU Cookbook 377

BeagleBoard Docs, Release 0.0.9

Solution Get a micro SD card that has at least 4GB and preferibly 8GB.

There are many ways to flash the card, but the best seems to be Etcher by https://www.balena.io/. Go to
https://www.balena.io/etcher/ and download the version for your host computer. Fire up Etcher, select
the image you just downloaded (no need to uncompress it, Etcher does it for you), select the SD card
and hit the Flash button and wait for it to finish.

Fig. 4.140: Etcher

Once the SD is flashed, insert it in the Beagle and power it up.

Cloud9 IDE

Problem How do I manage and edit my files?

Solution The image you downloaded includes Cloud9, a web-based intergrated development environ-
ment (IDE) as shown in Cloud9 IDE.

Just point the browswer on your host computer to http://192.168.7.2 and start exploring. If you want
the files in your home directory to appear in the tree structure click the settings gear and select Show
Home in Favorites as shown in Cloud9 Showing Home files.

If you want to edit files beyond your home directory you can link to the root file system by:

bone$ *cd*
bone$ *ln -s / root*
bone$ *cd root*
bone$ *ls*
bbb-uEnv.txt boot etc ID.txt lost+found mnt opt root sbin sys usr
bin dev home lib media nfs-uEnv.txt proc run srv tmp var

Now you can reach all the files from Cloud9.

Getting Example Code

Problem You are ready to start playing with the examples and need to find the code.

378 Chapter 4. Books

https://www.balena.io/
https://www.balena.io/etcher/
https://aws.amazon.com/cloud9/
http://192.168.7.2

BeagleBoard Docs, Release 0.0.9

Fig. 4.141: Cloud9 IDE

Solution You can find the code (and the whole book) on the PRU Cookbook github site: <https:
//github.com/MarkAYoder/PRUCookbook/tree/master/docs>. Just clone it on your Beagle and then
look in the docs directory.

Each chapter has its own directory and within that directory is a code directory that has all of the code.

Go and explore.

Blinking an LED

Problem You want to make sure everything is set up by blinking an LED.

Solution The ‘hello, world’ of the embedded world is to flash an LED. hello.pru0.c is some code that
blinks the USR3 LED ten times using the PRU.

Listing 4.66: hello.pru0.c
1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include "resource_table_empty.h"
4 #include "prugpio.h"
5

6 volatile register unsigned int __R30;
7 volatile register unsigned int __R31;
8

9 void main(void) {
10 int i;
11

12 uint32_t *gpio1 = (uint32_t *)GPIO1;
13

(continues on next page)

4.2. PRU Cookbook 379

https://github.com/MarkAYoder/PRUCookbook/tree/master/docs
https://github.com/MarkAYoder/PRUCookbook/tree/master/docs

BeagleBoard Docs, Release 0.0.9

Fig. 4.142: Cloud9 Showing Home files

380 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

14 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
15 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
16

17 for(i=0; i<10; i++) {
18 gpio1[GPIO_SETDATAOUT] = USR3; // The the USR3 LED on
19

20 __delay_cycles(500000000/5); // Wait 1/2 second
21

22 gpio1[GPIO_CLEARDATAOUT] = USR3;
23

24 __delay_cycles(500000000/5);
25

26 }
27 __halt();
28 }
29

30 // Turns off triggers
31 #pragma DATA_SECTION(init_pins, ".init_pins")
32 #pragma RETAIN(init_pins)
33 const char init_pins[] =
34 "/sys/class/leds/beaglebone:green:usr3/trigger\0none\0" \
35 "\0\0";

hello.pru0.c

Later chapters will go into details of how this code works, but if you want to run it right now do the
following.

bone$ *git clone https://github.com/MarkAYoder/PRUCookbook.git*
bone$ *cd PRUCookbook/docs/02start/code*

Tip: If the following doesn’t work see Compiling with clpru and lnkpru for instillation instructions.

Running Code on the Black or Pocket

bone$ *make TARGET=hello.pru0*
/var/lib/cloud9/common/Makefile:28: MODEL=TI_AM335x_BeagleBone_Black,TARGET=hello.
→˓pru0,COMMON=/var/lib/cloud9/common
/var/lib/cloud9/common/Makefile:147: GEN_DIR=/tmp/cloud9-examples,CHIP=am335x,
→˓PROC=pru,PRUN=0,PRU_DIR=/sys/class/remoteproc/remoteproc1,EXE=.out
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/hello.pru0.out to /lib/firmware/am335x-
→˓pru0-fw
write_init_pins.sh
writing "none" to "/sys/class/leds/beaglebone:green:usr3/trigger"
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

Running Code on the AI

4.2. PRU Cookbook 381

BeagleBoard Docs, Release 0.0.9

bone$ *make TARGET=hello.pru1_1*
/var/lib/cloud9/common/Makefile:28: MODEL=BeagleBoard.org_BeagleBone_AI,TARGET=hello.
→˓pru1_1
- Stopping PRU 1_1
CC hello.pru1_1.c
"/var/lib/cloud9/common/prugpio.h", line 4: warning #1181-D: #warning directive:
→˓"Found AI"
LD /tmp/cloud9-examples/hello.pru1_1.o
- copying firmware file /tmp/cloud9-examples/hello.pru1_1.out to /lib/firmware/
→˓am57xx-pru1_1-fw
write_init_pins.sh
writing "none" to "/sys/class/leds/beaglebone:green:usr3/trigger"
- Starting PRU 1_1
MODEL = BeagleBoard.org_BeagleBone_AI
PROC = pru
PRUN = 1_1
PRU_DIR = /dev/remoteproc/pruss1-core1
rm /tmp/cloud9-examples/hello.pru1_1.o

Look quickly and you will see the USR3 LED blinking.

Later sections give more details on how all this works.

4.2.3 Running a Program; Configuring Pins

There are a lot of details in compiling and running PRU code. Fortunately those details are captured
in a common Makefile that is used througout this book. This chapter shows how to use the Makefile to
compile code and also start and stop the PRUs.

Note: The following are resources used in this chapter:

• PRU Code Generation Tools - Compiler

• PRU Software Support Package

• PRU Optimizing C/C++ Compiler

• PRU Assembly Language Tools

• AM572x Technical Reference Manual (AI)

• AM335x Technical Reference Manual (All others)

Getting Example Code

Problem I want to get the files used in this book.

Solution It’s all on a GitHub repository.

bone$ git clone https://github.com/MarkAYoder/PRUCookbook.git

Note: #TODO#: There needs to be a code-only repo that is validated against the documentation code
to be identical for specific version. The version needs to be noted in the documentation.

382 Chapter 4. Books

http://software-dl.ti.com/codegen/esd/cgt_ai_64_lic_sw/PRU/2.1.5/ti_cgt_pru_2.1.5_armlinuxa8hf_busybox_installer.sh
http://git.ti.com/pru-software-support-package
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73

BeagleBoard Docs, Release 0.0.9

Compiling with clpru and lnkpru

Problem You need details on the c compiler, linker and other tools for the PRU.

Solution The PRU compiler and linker are already installed on many images. They are called clpru
and lnkpru. Do the following to see if clpru is installed.

bone$ which clpru
/usr/bin/clpru

Tip: If clpru isn’t installed, follow the instructions at https://elinux.org/Beagleboard:
BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools to install it.

bone$ sudo apt update
bone$ sudo apt install ti-pru-cgt-installer

Details on each can be found here:

• PRU Optimizing C/C++ Compiler

• PRU Assembly Language Tools

In fact there are PRU versions of many of the standard code generation tools.

code tools

bone$ ls /usr/bin/*pru
/usr/bin/abspru /usr/bin/clistpru /usr/bin/hexpru /usr/bin/ofdpru
/usr/bin/acpiapru /usr/bin/clpru /usr/bin/ilkpru /usr/bin/optpru
/usr/bin/arpru /usr/bin/dempru /usr/bin/libinfopru /usr/bin/rc_test_encoders_
→˓pru
/usr/bin/asmpru /usr/bin/dispru /usr/bin/lnkpru /usr/bin/strippru
/usr/bin/cgpru /usr/bin/embedpru /usr/bin/nmpru /usr/bin/xrefpru

See the PRU Assembly Language Tools for more details.

Making sure the PRUs are configured

Problem When running the Makefile for the PRU you get and error about /dev/remoteproc is missing.

Solution Edit /boot/uEnv.txt and enble pru_rproc by doing the following.

bone$ *sudo vi /boot/uEnv.txt*

Around line 40 you will see:

###pru_rproc (4.19.x-ti kernel)
uboot_overlay_pru=AM335X-PRU-RPROC-4-19-TI-00A0.dtbo

Uncomment the uboot_overlay line as shown and then reboot. /dev/remoteproc should now be there.

bone$ sudo reboot
bone$ ls -ls /dev/remoteproc/
total 0

(continues on next page)

4.2. PRU Cookbook 383

https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools
https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

0 lrwxrwxrwx 1 root root 33 Jul 29 16:12 pruss-core0 -> /sys/class/remoteproc/
→˓remoteproc1
0 lrwxrwxrwx 1 root root 33 Jul 29 16:12 pruss-core1 -> /sys/class/remoteproc/
→˓remoteproc2

Compiling and Running

Problem I want to compile and run an example.

Solution Change to the directory of the code you want to run.

bone$ cd PRUCookbook/docs/06io/code
bone$ ls
gpio.pru0.c Makefile setup.sh

Source the setup file.

bone$ source setup.sh
TARGET=gpio.pru0
PocketBeagle Found
P2_05
Current mode for P2_05 is: gpio
Current mode for P2_05 is: gpio

Now you are ready to compile and run. This is automated for you in the Makefile

bone$ make
/var/lib/cloud9/common/Makefile:28: MODEL=TI_AM335x_BeagleBone_Black,TARGET=gpio.pru0,
→˓COMMON=/var/lib/cloud9/common
/var/lib/cloud9/common/Makefile:147: GEN_DIR=/tmp/cloud9-examples,CHIP=am335x,
→˓PROC=pru,PRUN=0,PRU_DIR=/sys/class/remoteproc/remoteproc1,EXE=.out
- Stopping PRU 0
/bin/sh: 1: echo: echo: I/O error
Cannot stop 0
CC gpio.pru0.c
"/var/lib/cloud9/common/prugpio.h", line 53: warning #1181-D: #warning directive:
→˓"Found am335x"
LD /tmp/cloud9-examples/gpio.pru0.o
- copying firmware file /tmp/cloud9-examples/gpio.pru0.out to /lib/firmware/am335x-
→˓pru0-fw
write_init_pins.sh
writing "out" to "/sys/class/gpio/gpio30/direction"
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1
rm /tmp/cloud9-examples/gpio.pru0.o

Congratulations, your are now running a PRU. If you have an LED attached to P9_11 on the Black, or
P2_05 on the Pocket, it should be blinking.

Discussion The setup.sh file sets the TARGET to the file you want to compile. Set it to the filename,
without the .c extension (gpio.pru0). The file extension .pru0 specifies the number of the PRU you are
using (either 1_0, 1_1, 2_0, 2_1 on the AI or 0 or 1 on the others)

384 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

You can override the TARGET on the command line.

bone$ cp gpio.pru0.c gpio.pru1.c
bone$ export TARGET=gpio.pru1

Notice the TARGET doesn’t have the .c on the end.

You can also specify them when running make.

bone$ cp gpio.pru0.c gpio.pru1.c
bone$ make TARGET=gpio.pru1

The setup file also contains instructions to figure out which Beagle you are running and then configure
the pins acordingly.

Listing 4.67: gpio_setup.sh
1 #!/bin/bash
2

3 export TARGET=gpio.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = "Black"]; then

10 echo " Found"
11 pins="P9_11"
12 elif [$machine = "Blue"]; then
13 echo " Found"
14 pins=""
15 elif [$machine = "PocketBeagle"]; then
16 echo " Found"
17 pins="P2_05"
18 else
19 echo " Not Found"
20 pins=""
21 fi
22

23 for pin in $pins
24 do
25 echo $pin
26 config-pin $pin gpio
27 config-pin -q $pin
28 done

gpio_setup.sh

Line Explanation
2-5 Set which PRU to use and which file to compile.
7 Figure out which type of Beagle we have.
9-21 Based on the type, set the pins.
23-28 Configure (set the pin mux) for each of the pins.

Tip: The BeagleBone AI has it’s pins preconfigured at boot time, so there’s no need to use config-pin.

The Makefile stops the PRU, compiles the file and moves it where it will be loaded, and then restarts
the PRU.

4.2. PRU Cookbook 385

BeagleBoard Docs, Release 0.0.9

Stopping and Starting the PRU

Problem I want to stop and start the PRU.

Solution It’s easy, if you already have TARGET set up:

bone$ make stop
- Stopping PRU 0
stop
bone$ make start
- Starting PRU 0
start

See dmesg Hw to see how to tell if the PRU is stopped.

This assumes TARGET is set to the PRU you are using. If you want to control the other PRU use:

bone$ cp gpio.pru0.c gpio.pru1.c
bone$ make TARGET=gpio.pru1
bone$ make TARGET=gpio.pru1 stop
bone$ make TARGET=gpio.pru1 start

The Standard Makefile

Problem There are all sorts of options that need to be set when compiling a program. How can I be
sure to get them all right?

Solution The surest way to make sure everything is right is to use our standard Makefile.

Discussion It’s assumed you already know how Makefiles work. If not, there are many resources online
that can bring you up to speed. Here is the local Makefile used throughout this book.

Listing 4.68: Local Makefile
1 include /var/lib/cloud9/common/Makefile

Makefile

Each of the local Makefiles refer to the same standard Makefile. The details of how the Makefile works
is beyond the scope of this cookbook.

Fortunately you shouldn’t have to modify the Makefile.

The Linker Command File - am335x_pru.cmd

Problem The linker needs to be told where in memory to place the code and variables.

Solution am335x_pru.cmd is the standard linker command file that tells the linker where to put what
for the BeagleBone Black and Blue, and the Pocket. The am57xx_pru.cmd does the same for the AI. Both
files can be found in /var/lib/cloud9/common.

386 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Listing 4.69: am335x_pru.cmd
1 /**/
2 /* AM335x_PRU.cmd */
3 /* Copyright (c) 2015 Texas Instruments Incorporated */
4 /* */
5 /* Description: This file is a linker command file that can be used for */
6 /* linking PRU programs built with the C compiler and */
7 /* the resulting .out file on an AM335x device. */
8 /**/
9

10 -cr /* Link using C␣
→˓conventions */

11

12 /* Specify the System Memory Map */
13 MEMORY
14 {
15 PAGE 0:
16 PRU_IMEM : org = 0x00000000 len = 0x00002000 /* 8kB PRU0␣

→˓Instruction RAM */
17

18 PAGE 1:
19

20 /* RAM */
21

22 PRU_DMEM_0_1 : org = 0x00000000 len = 0x00002000 CREGISTER=24 /* 8kB␣
→˓PRU Data RAM 0_1 */

23 PRU_DMEM_1_0 : org = 0x00002000 len = 0x00002000 CREGISTER=25 /
→˓* 8kB PRU Data RAM 1_0 */

24

25 PAGE 2:
26 PRU_SHAREDMEM : org = 0x00010000 len = 0x00003000 CREGISTER=28 /* 12kB␣

→˓Shared RAM */
27

28 DDR : org = 0x80000000 len =␣
→˓0x00000100 CREGISTER=31

29 L3OCMC : org = 0x40000000 len =␣
→˓0x00010000 CREGISTER=30

30

31

32 /* Peripherals */
33

34 PRU_CFG : org = 0x00026000 len =␣
→˓0x00000044 CREGISTER=4

35 PRU_ECAP : org = 0x00030000 len = 0x00000060 CREGISTER=3
36 PRU_IEP : org = 0x0002E000 len =␣

→˓0x0000031C CREGISTER=26
37 PRU_INTC : org = 0x00020000 len = 0x00001504 CREGISTER=0
38 PRU_UART : org = 0x00028000 len = 0x00000038 CREGISTER=7
39

40 DCAN0 : org = 0x481CC000 len =␣
→˓0x000001E8 CREGISTER=14

41 DCAN1 : org = 0x481D0000 len =␣
→˓0x000001E8 CREGISTER=15

42 DMTIMER2 : org = 0x48040000 len = 0x0000005C CREGISTER=1
43 PWMSS0 : org = 0x48300000 len =␣

→˓0x000002C4 CREGISTER=18
44 PWMSS1 : org = 0x48302000 len =␣

→˓0x000002C4 CREGISTER=19 (continues on next page)

4.2. PRU Cookbook 387

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

45 PWMSS2 : org = 0x48304000 len =␣
→˓0x000002C4 CREGISTER=20

46 GEMAC : org = 0x4A100000 len =␣
→˓0x0000128C CREGISTER=9

47 I2C1 : org = 0x4802A000 len =␣
→˓0x000000D8 CREGISTER=2

48 I2C2 : org = 0x4819C000 len =␣
→˓0x000000D8 CREGISTER=17

49 MBX0 : org = 0x480C8000 len =␣
→˓0x00000140 CREGISTER=22

50 MCASP0_DMA : org = 0x46000000 len =␣
→˓0x00000100 CREGISTER=8

51 MCSPI0 : org = 0x48030000 len =␣
→˓0x000001A4 CREGISTER=6

52 MCSPI1 : org = 0x481A0000 len =␣
→˓0x000001A4 CREGISTER=16

53 MMCHS0 : org = 0x48060000 len =␣
→˓0x00000300 CREGISTER=5

54 SPINLOCK : org = 0x480CA000 len =␣
→˓0x00000880 CREGISTER=23

55 TPCC : org = 0x49000000 len =␣
→˓0x00001098 CREGISTER=29

56 UART1 : org = 0x48022000 len =␣
→˓0x00000088 CREGISTER=11

57 UART2 : org = 0x48024000 len =␣
→˓0x00000088 CREGISTER=12

58

59 RSVD10 : org = 0x48318000 len =␣
→˓0x00000100 CREGISTER=10

60 RSVD13 : org = 0x48310000 len =␣
→˓0x00000100 CREGISTER=13

61 RSVD21 : org = 0x00032400 len =␣
→˓0x00000100 CREGISTER=21

62 RSVD27 : org = 0x00032000 len =␣
→˓0x00000100 CREGISTER=27

63

64 }
65

66 /* Specify the sections allocation into memory */
67 SECTIONS {
68 /* Forces _c_int00 to the start of PRU IRAM. Not necessary when loading
69 an ELF file, but useful when loading a binary */
70 .text:_c_int00* > 0x0, PAGE 0
71

72 .text > PRU_IMEM, PAGE 0
73 .stack > PRU_DMEM_0_1, PAGE 1
74 .bss > PRU_DMEM_0_1, PAGE 1
75 .cio > PRU_DMEM_0_1, PAGE 1
76 .data > PRU_DMEM_0_1, PAGE 1
77 .switch > PRU_DMEM_0_1, PAGE 1
78 .sysmem > PRU_DMEM_0_1, PAGE 1
79 .cinit > PRU_DMEM_0_1, PAGE 1
80 .rodata > PRU_DMEM_0_1, PAGE 1
81 .rofardata > PRU_DMEM_0_1, PAGE 1
82 .farbss > PRU_DMEM_0_1, PAGE 1
83 .fardata > PRU_DMEM_0_1, PAGE 1

(continues on next page)

388 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

84

85 .resource_table > PRU_DMEM_0_1, PAGE 1
86 .init_pins > PRU_DMEM_0_1, PAGE 1
87 }

am335x_pru.cmd

The cmd file for the AI is about the same, with appropriate addresses for the AI.

Discussion The important things to notice in the file are given in the following table.

AM335x_PRU.cmd important things

Line Explanation
16 This is where the instructions are stored. See page 206 of the AM335x Technical Reference

Manual rev. P Or see page 417 of AM572x Technical Reference Manual for the AI.
22 This is where PRU 0’s DMEM 0 is mapped. It’s also where PRU 1’s DMEM 1 is mapped.
23 The reverse to above. PRU 0’s DMEM 1 appears here and PRU 1’s DMEM 0 is here.
26 The shared memory for both PRU’s appears here.
72 The .text section is where the code goes. It’s mapped to IMEM
73 The ((stack)) is then mapped to DMEM 0. Notice that DMEM 0 is one bank

of memory for PRU 0 and another for PRU1, so they both get their own stacks.
74 The .bss section is where the heap goes.

Why is it important to understand this file? If you are going to store things in DMEM, you need to be
sure to start at address 0x0200 since the stack and the heap are in the locations below 0x0200.

Loading Firmware

Problem I have my PRU code all compiled and need to load it on the PRU.

Solution It’s a simple three step process.

• Stop the PRU

• Write the .out file to the right place in /lib/firmware

• Start the PRU.

This is all handled in the The Standard Makefile.

Discussion The PRUs appear in the Linux file space at /dev/remoteproc/.

Finding the PRUs

bone$ cd /dev/remoteproc/
bone$ ls
pruss-core0 pruss-core1

Or if you are on the AI:

bone$ cd /dev/remoteproc/
bone$ ls
dsp1 dsp2 ipu1 ipu2 pruss1-core0 pruss1-core1 pruss2-core0 pruss2-core1

4.2. PRU Cookbook 389

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
http://www.ti.com/lit/pdf/spruhz6l

BeagleBoard Docs, Release 0.0.9

You see there that the AI has two pairs of PRUs, plus a couple of DSPs and other goodies.

Here we see PRU 0 and PRU 1 in the path. Let’s follow PRU 0.

bone$ cd pruss-core0
bone$ ls
device firmware name power state subsystem uevent

Here we see the files that control PRU 0. firmware tells where in /lib/firmware to look for the code to
run on the PRU.

bone$ cat firmware
am335x-pru0-fw

Therefore you copy your .out file to /lib/firmware/am335x-pru0-fw.

Configuring Pins for Controlling Servos

Problem You want to configure the pins so the PRU outputs are accessable.

Solution It depends on which Beagle you are running on. If you are on the AI or Blue, everything is
already configured for you. If you are on the Black or Pocket you’ll need to run the following script.

Listing 4.70: servos_setup.sh
1 #!/bin/bash
2 # Configure the PRU pins based on which Beagle is running
3 machine=$(awk '{print $NF}' /proc/device-tree/model)
4 echo -n $machine
5 if [$machine = "Black"]; then
6 echo " Found"
7 pins="P8_27 P8_28 P8_29 P8_30 P8_39 P8_40 P8_41 P8_42"
8 elif [$machine = "Blue"]; then
9 echo " Found"

10 pins=""
11 elif [$machine = "PocketBeagle"]; then
12 echo " Found"
13 pins="P2_35 P1_35 P1_02 P1_04"
14 else
15 echo " Not Found"
16 pins=""
17 fi
18

19 for pin in $pins
20 do
21 echo $pin
22 config-pin $pin pruout
23 config-pin -q $pin
24 done

servos_setup.sh

Discussion The first part of the code looks in /proc/device-tree/model to see which Beagle is run-
ning. Based on that it assigns pins a list of pins to configure. Then the last part of the script loops
through each of the pins and configures it.

390 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Configuring Pins for Controlling Encoders

Problem You want to configure the pins so the PRU inputs are accessable.

Solution It depends on which Beagle you are running on. If you are on the AI or Blue, everything is
already configured for you. If you are on the Black or Pocket you’ll need to run the following script.

Listing 4.71: encoder_setup.sh
1 #!/bin/bash
2 # Configure the pins based on which Beagle is running
3 machine=$(awk '{print $NF}' /proc/device-tree/model)
4 echo -n $machine
5

6 # Configure eQEP pins
7 if [$machine = "Black"]; then
8 echo " Found"
9 pins="P9_92 P9_27 P8_35 P8_33 P8_12 P8_11 P8_41 P8_42"

10 elif [$machine = "Blue"]; then
11 echo " Found"
12 pins=""
13 elif [$machine = "PocketBeagle"]; then
14 echo " Found"
15 pins="P1_31 P2_34 P2_10 P2_24 P2_33"
16 else
17 echo " Not Found"
18 pins=""
19 fi
20

21 for pin in $pins
22 do
23 echo $pin
24 config-pin $pin qep
25 config-pin -q $pin
26 done
27

28 ##
29 # Configure PRU pins
30 if [$machine = "Black"]; then
31 echo " Found"
32 pins="P8_16 P8_15"
33 elif [$machine = "Blue"]; then
34 echo " Found"
35 pins=""
36 elif [$machine = "PocketBeagle"]; then
37 echo " Found"
38 pins="P2_09 P2_18"
39 else
40 echo " Not Found"
41 pins=""
42 fi
43

44 for pin in $pins
45 do
46 echo $pin
47 config-pin $pin pruin
48 config-pin -q $pin

(continues on next page)

4.2. PRU Cookbook 391

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

49 done

encoder_setup.sh

Discussion This works like the servo setup except some of the pins are configured as to the hardware
eQEPs and other to the PRU inputs.

4.2.4 Debugging and Benchmarking

One of the challenges is getting debug information out of the PRUs since they don’t have a traditional
printf(). In this chapter four different methods are presented that I’ve found useful in debugging. The
first is simply attaching an LED. The second is using dmesg to watch the kernel messages. prudebug, a
simple debugger that allows you to inspect registers and memory of the PRUs, is then presented. Finally,
using one of the UARTS to send debugging information out a serial port is shown.

Debugging via an LED

Problem I need a simple way to see if my program is running without slowing the real-time execution.

Solution One of the simplest ways to do this is to attach an LED to the output pin and watch it flash.
LED used for debugging P9_29 shows an LED attached to pin P9_29 of the BeagleBone Black.

Fig. 4.143: LED used for debugging P9_29

Make sure you have the LED in the correct way, or it won’t work.

Discussion If your output is changing more than a few times a second, the LED will be blinking too
fast and you’ll need an oscilloscope or a logic analyzer to see what’s happening.

392 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Another useful tool that let’s you see the contents of the registers and RAM is discussed in prudebug - A
Simple Debugger for the PRU.

dmesg Hw

Problem I’m getting an error message (/sys/devices/platform/ocp/4a326000.pruss-soc-bus/
4a300000.pruss/4a334000.pru0/remoteproc/remoteproc1/state: Invalid argument) when I
load my code, but don’t know what’s causing it.

Solution The command dmesg outputs useful information when dealing with the kernel. Simplying
running dmesg -Hw can tell you a lot. The -H flag puts the dates in the human readable form, the -w tells
it to wait for more information. Often I’ll have a window open running dmesg -Hw.

Here’s what dmesg said for the example above.

dmesg -Hw

[+0.000018] remoteproc remoteproc1: header-less resource table
[+0.011879] remoteproc remoteproc1: Failed to find resource table
[+0.008770] remoteproc remoteproc1: Boot failed: -22

It quickly told me I needed to add the line #include "resource_table_empty.h" to my code.

prudebug - A Simple Debugger for the PRU

Problem You need to examine registers and memory on the PRUs.

Solution prudebug is a simple debugger for the PRUs that lets you start and stop the PRUs and examine
the registers and memory. It can be found on GitHub https://github.com/RRvW/prudebug-rl. I have a
version I updated to use byte addressing rather than word addressing. This makes it easier to work with
the assembler output. You can find it in my GitHub BeagleBoard repo https://github.com/MarkAYoder/
BeagleBoard-exercises/tree/master/pru/prudebug.

Just download the files and type make.

Discussion Once prudebug is installed is rather easy to use.

Note: prudebug has now been ported to the AI.

bone$ *sudo prudebug*
PRU Debugger v0.25
(C) Copyright 2011, 2013 by Arctica Technologies. All rights reserved.
Written by Steven Anderson

Using /dev/mem device.
Processor type AM335x
PRUSS memory address 0x4a300000
PRUSS memory length 0x00080000

offsets below are in 32-bit byte addresses (not ARM byte addresses)
PRU Instruction Data Ctrl

(continues on next page)

4.2. PRU Cookbook 393

https://github.com/RRvW/prudebug-rl
https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/pru/prudebug
https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/pru/prudebug

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

0 0x00034000 0x00000000 0x00022000
1 0x00038000 0x00002000 0x00024000

You get help by entering help. You cal also enter hb to get a brief help.

PRU0> *hb*
Command help

BR [breakpoint_number [address]] - View or set an instruction breakpoint
D memory_location_ba [length] - Raw dump of PRU data memory (32-bit byte offset␣

→˓from beginning of full PRU memory block - all PRUs)
DD memory_location_ba [length] - Dump data memory (32-bit byte offset from␣

→˓beginning of PRU data memory)
DI memory_location_ba [length] - Dump instruction memory (32-bit byte offset from␣

→˓beginning of PRU instruction memory)
DIS memory_location_ba [length] - Disassemble instruction memory (32-bit byte␣

→˓offset from beginning of PRU instruction memory)
G - Start processor execution of instructions (at current IP)
GSS - Start processor execution using automatic single stepping - this allows␣

→˓running a program with breakpoints
HALT - Halt the processor
L memory_location_iwa file_name - Load program file into instruction memory
PRU pru_number - Set the active PRU where pru_number ranges from 0 to 1
Q - Quit the debugger and return to shell prompt.
R - Display the current PRU registers.
RESET - Reset the current PRU
SS - Single step the current instruction.
WA [watch_num [address [value]]] - Clear or set a watch point
WR memory_location_ba value1 [value2 [value3 ...]] - Write a 32-bit value to a␣

→˓raw (offset from beginning of full PRU memory block)
WRD memory_location_ba value1 [value2 [value3 ...]] - Write a 32-bit value to PRU␣

→˓data memory for current PRU
WRI memory_location_ba value1 [value2 [value3 ...]] - Write a 32-bit value to PRU␣

→˓instruction memory for current PRU

Initially you are talking to PRU 0. You can enter pru 1 to talk to PRU 1. The commands I find most
useful are, r, to see the registers.

PRU0> *r*
Register info for PRU0

Control register: 0x00008003
Reset PC:0x0000 RUNNING, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING, PROC_ENABLED

Program counter: 0x0030
Current instruction: ADD R0.b0, R0.b0, R0.b0

Rxx registers not available since PRU is RUNNING.

Notice the PRU has to be stopped to see the register contents.

PRU0> *h*
PRU0 Halted.
PRU0> *r*
Register info for PRU0

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING, PROC_

→˓DISABLED
(continues on next page)

394 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

Program counter: 0x0028
Current instruction: LBBO R15, R15, 4, 4

R00: 0x00000000 R08: 0x00000000 R16: 0x00000001 R24: 0x00000002
R01: 0x00000000 R09: 0xaf40dcf2 R17: 0x00000000 R25: 0x00000003
R02: 0x000000dc R10: 0xd8255b1b R18: 0x00000003 R26: 0x00000003
R03: 0x000f0000 R11: 0xc50cbefd R19: 0x00000100 R27: 0x00000002
R04: 0x00000000 R12: 0xb037c0d7 R20: 0x00000100 R28: 0x8ca9d976
R05: 0x00000009 R13: 0xf48bbe23 R21: 0x441fb678 R29: 0x00000002
R06: 0x00000000 R14: 0x00000134 R22: 0xc8cc0752 R30: 0x00000000
R07: 0x00000009 R15: 0x00000200 R23: 0xe346fee9 R31: 0x00000000

You can resume using g which starts right where you left off, or use reset to restart back at the beginning.

The dd command dumps the memory. Keep in mind the following.

Table 4.12: Important memory locations
Address Contents
0x00000 Start of the stack for PRU 0. The file AM335x_PRU.cmd specifies where the stack is.
0x00100 Start of the heap for PRU 0.
0x00200 Start of DRAM that your programs can use. The Makefile specifies

the size of the stack and the heap.
0x10000 Start of the memory shared between the PRUs.

Using dd with no address prints the next section of memory.

PRU0> *dd*
dd
Absolute addr = 0x0000, offset = 0x0000, Len = 16
[0x0000] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0010] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0020] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0030] 0x00000000 0x00000000 0x00000000 0x00000000

The stack grows from higher memory to lower memory, so you often won’t see much around address
0x0000.

PRU0> *dd 0x100*
dd 0x100
Absolute addr = 0x0100, offset = 0x0000, Len = 16
[0x0100] 0x00000001 0x00000002 0x00000003 0x00000004
[0x0110] 0x00000004 0x00000003 0x00000002 0x00000001
[0x0120] 0x00000001 0x00000000 0x00000000 0x00000000
[0x0130] 0x00000000 0x00000200 0x862e5c18 0xfeb21aca

Here we see some values on the heap.

PRU0> *dd 0x200*
dd 0x200
Absolute addr = 0x0200, offset = 0x0000, Len = 16
[0x0200] 0x00000001 0x00000004 0x00000002 0x00000003
[0x0210] 0x00000003 0x00000011 0x00000004 0x00000010
[0x0220] 0x0a4fe833 0xb222ebda 0xe5575236 0xc50cbefd
[0x0230] 0xb037c0d7 0xf48bbe23 0x88c460f0 0x011550d4

Data written explicity to 0x0200 of the DRAM.

4.2. PRU Cookbook 395

BeagleBoard Docs, Release 0.0.9

PRU0> *dd 0x10000*
dd 0x10000
Absolute addr = 0x10000, offset = 0x0000, Len = 16
[0x10000] 0x8ca9d976 0xebcb119e 0x3aebce31 0x68c44d8b
[0x10010] 0xc370ba7e 0x2fea993b 0x15c67fa5 0xfbf68557
[0x10020] 0x5ad81b4f 0x4a55071a 0x48576eb7 0x1004786b
[0x10030] 0x2265ebc6 0xa27b32a0 0x340d34dc 0xbfa02d4b

Here’s the shared memory.

You can also use prudebug to set breakpoints and single step, but I haven’t used that feature much.

Memory Allocation gives examples of how you can control where your vaiables are stored in memory.

UART

Problem I’d like to use something like printf() to debug my code.

Solution One simple, yet effective approach to ‘printing’ from the PRU is an idea taken from the Adru-
ino playbook; use the UART (serial port) to output debug information. The PRU has it’s own UART that
can send characters to a serial port.

You’ll need a 3.3V FTDI cable to go between your Beagle and the USB port on your host computer as
shown in FTDI cable.1 you can get such a cable from places such as Sparkfun or Adafruit.

Fig. 4.144: FTDI cable

1 FTDI images are from the BeagleBone Cookbook

396 Chapter 4. Books

https://www.sparkfun.com/products/9717
https://www.adafruit.com/product/70
http://shop.oreilly.com/product/0636920033899.do

BeagleBoard Docs, Release 0.0.9

Discussion The Beagle side of the FTDI cable has a small triangle on it as shown in FTDI connector
which marks the ground pin, pin 1.

Fig. 4.145: FTDI connector

The Wring for FTDI cable to Beagle table shows which pins connect where and FTDI to BB Black is a wiring
diagram for the BeagleBone Black.

Table 4.13: Wring for FTDI cable to Beagle
FTDI pin Color Black pin AI 1 pin AI 2 pin Pocket Function
0 black P9_1 P8_1 P8_1 P1_16 ground
4 orange P9_24 P8_43 P8_33a P1_12 rx
5 yellow P9_26 P8_44 P8_31a P1_06 tx

Details Two examples of using the UART are presented here. The first (uart1.pru1_0.c) sends a char-
acter out the serial port then waits for a character to come in. Once the new character arrives another
character is output.

The second example (uart2.pru1_0.c) prints out a string and then waits for characters to arrive. Once an
ENTER appears the string is sent back.

Tip: On the Black, either PRU0 and PRU1 can run this code. Both have access to the same UART.

You need to set the pin muxes.

config-pin

4.2. PRU Cookbook 397

BeagleBoard Docs, Release 0.0.9

Fig. 4.146: FTDI to BB Black

Configure tx Black
bone$ *config-pin P9_24 pru_uart*
Configure rx Black
bone$ *config-pin P9_26 pru_uart*

Configure tx Pocket
bone$ *config-pin P1_06 pru_uart*
Configure rx Pocket
bone$ *config-pin P1_12 pru_uart*

Note: See Configuring pins on the AI via device trees for configuring pins on the AI. Make sure your rx
pins are configured as input pins in the device tree.

For example

DRA7XX_CORE_IOPAD(0x3610, *PIN_INPUT* | MUX_MODE10) // C6: P8.33a:

Listing 4.72: uart1.pru1_0.c
1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/

→˓trees/master/examples/am335x/PRU_Hardware_UART
2 // This example was converted to the am5729 by changing the names in pru_uart.h
3 // for the am335x to the more descriptive names for the am5729.
4 // For example DLL convertes to DIVISOR_REGISTER_LSB_
5 #include <stdint.h>
6 #include <pru_uart.h>
7 #include "resource_table_empty.h"
8

9 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
(continues on next page)

398 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

10 * only going to send 8 at a time */
11 #define FIFO_SIZE 16
12 #define MAX_CHARS 8
13

14 void main(void)
15 {
16 uint8_t tx;
17 uint8_t rx;
18 uint8_t cnt;
19

20 /* hostBuffer points to the string to be printed */
21 char* hostBuffer;
22

23 /*** INITIALIZATION ***/
24

25 /* Set up UART to function at 115200 baud - DLL divisor is 104 at 16x␣
→˓oversample

26 * 192MHz / 104 / 16 = ~115200 */
27 CT_UART.DIVISOR_REGISTER_LSB_ = 104;
28 CT_UART.DIVISOR_REGISTER_MSB_ = 0;
29 CT_UART.MODE_DEFINITION_REGISTER = 0x0;
30

31 /* Enable Interrupts in UART module. This allows the main thread to poll for
32 * Receive Data Available and Transmit Holding Register Empty */
33 CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;
34

35 /* If FIFOs are to be used, select desired trigger level and enable
36 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first before
37 * other bits are configured */
38 /* Enable FIFOs for now at 1-byte, and flush them */
39 CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER = (0x8) |␣

→˓(0x4) | (0x2) | (0x1);
40 //CT_UART.FCR = (0x80) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO trigger
41

42 /* Choose desired protocol settings by writing to LCR */
43 /* 8-bit word, 1 stop bit, no parity, no break control and no divisor latch */
44 CT_UART.LINE_CONTROL_REGISTER = 3;
45

46 /* Enable loopback for test */
47 CT_UART.MODEM_CONTROL_REGISTER = 0x00;
48

49 /* Choose desired response to emulation suspend events by configuring
50 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_MGMT */
51 /* Allow UART to run free, enable UART TX/RX */
52 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x6001;
53

54 /*** END INITIALIZATION ***/
55

56 /* Priming the 'hostbuffer' with a message */
57 hostBuffer = "Hello! This is a long string\r\n";
58

59 /*** SEND SOME DATA ***/
60

61 /* Let's send/receive some dummy data */
62 while(1) {
63 cnt = 0;

(continues on next page)

4.2. PRU Cookbook 399

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

64 while(1) {
65 /* Load character, ensure it is not string termination */
66 if ((tx = hostBuffer[cnt]) == '\0')
67 break;
68 cnt++;
69 CT_UART.RBR_THR_REGISTERS = tx;
70

71 /* Because we are doing loopback, wait until LSR.DR == 1
72 * indicating there is data in the RX FIFO */
73 while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0);
74

75 /* Read the value from RBR */
76 rx = CT_UART.RBR_THR_REGISTERS;
77

78 /* Wait for TX FIFO to be empty */
79 while (!((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_

→˓CONTROL_REGISTER & 0x2) == 0x2));
80 }
81 }
82

83 /*** DONE SENDING DATA ***/
84

85 /* Disable UART before halting */
86 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;
87

88 /* Halt PRU core */
89 __halt();
90 }

uart1.pru1_0.c

Set the following variables so make will know what to compile.

Listing 4.73: make
bone$ *make TARGET=uart1.pru0*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=uart1.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/uart1.pru0.out to /lib/firmware/
→˓am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /dev/remoteproc/pruss-core0

Now make will compile, load PRU0 and start it. In a terminal window on your host computer run

host$ *screen /dev/ttyUSB0 115200*

It will initially display the first charters (H) and then as you enter characters on the keyboard, the rest of
the message will appear.

Here’s the code (uart1.pru1_0.c) that does it.

400 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.147: uart1.pru0.c output

Listing 4.74: uart1.pru1_0.c
1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/

→˓trees/master/examples/am335x/PRU_Hardware_UART
2 // This example was converted to the am5729 by changing the names in pru_uart.h
3 // for the am335x to the more descriptive names for the am5729.
4 // For example DLL convertes to DIVISOR_REGISTER_LSB_
5 #include <stdint.h>
6 #include <pru_uart.h>
7 #include "resource_table_empty.h"
8

9 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
10 * only going to send 8 at a time */
11 #define FIFO_SIZE 16
12 #define MAX_CHARS 8
13

14 void main(void)
15 {
16 uint8_t tx;
17 uint8_t rx;
18 uint8_t cnt;
19

20 /* hostBuffer points to the string to be printed */
21 char* hostBuffer;
22

23 /*** INITIALIZATION ***/
24

25 /* Set up UART to function at 115200 baud - DLL divisor is 104 at 16x␣
→˓oversample

26 * 192MHz / 104 / 16 = ~115200 */
27 CT_UART.DIVISOR_REGISTER_LSB_ = 104;
28 CT_UART.DIVISOR_REGISTER_MSB_ = 0;
29 CT_UART.MODE_DEFINITION_REGISTER = 0x0;
30

31 /* Enable Interrupts in UART module. This allows the main thread to poll for
32 * Receive Data Available and Transmit Holding Register Empty */
33 CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;
34

35 /* If FIFOs are to be used, select desired trigger level and enable
36 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first before
37 * other bits are configured */

(continues on next page)

4.2. PRU Cookbook 401

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

38 /* Enable FIFOs for now at 1-byte, and flush them */
39 CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER = (0x8) |␣

→˓(0x4) | (0x2) | (0x1);
40 //CT_UART.FCR = (0x80) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO trigger
41

42 /* Choose desired protocol settings by writing to LCR */
43 /* 8-bit word, 1 stop bit, no parity, no break control and no divisor latch */
44 CT_UART.LINE_CONTROL_REGISTER = 3;
45

46 /* Enable loopback for test */
47 CT_UART.MODEM_CONTROL_REGISTER = 0x00;
48

49 /* Choose desired response to emulation suspend events by configuring
50 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_MGMT */
51 /* Allow UART to run free, enable UART TX/RX */
52 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x6001;
53

54 /*** END INITIALIZATION ***/
55

56 /* Priming the 'hostbuffer' with a message */
57 hostBuffer = "Hello! This is a long string\r\n";
58

59 /*** SEND SOME DATA ***/
60

61 /* Let's send/receive some dummy data */
62 while(1) {
63 cnt = 0;
64 while(1) {
65 /* Load character, ensure it is not string termination */
66 if ((tx = hostBuffer[cnt]) == '\0')
67 break;
68 cnt++;
69 CT_UART.RBR_THR_REGISTERS = tx;
70

71 /* Because we are doing loopback, wait until LSR.DR == 1
72 * indicating there is data in the RX FIFO */
73 while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0);
74

75 /* Read the value from RBR */
76 rx = CT_UART.RBR_THR_REGISTERS;
77

78 /* Wait for TX FIFO to be empty */
79 while (!((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_

→˓CONTROL_REGISTER & 0x2) == 0x2));
80 }
81 }
82

83 /*** DONE SENDING DATA ***/
84

85 /* Disable UART before halting */
86 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;
87

88 /* Halt PRU core */
89 __halt();
90 }

uart1.pru1_0.c

402 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Note: I’m using the AI version of the code since it uses variables with more desciptive names.

The first part of the code initializes the UART. Then the line CT_UART.RBR_THR_REGISTERS = tx; takes
a character in tx and sends it to the transmit buffer on the UART. Think of this as the UART version of
the printf().

Later the line while (!((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER &
0x2) == 0x2)); waits for the transmitter FIFO to be empty. This makes sure later characters won’t
overwrite the buffer before they can be sent. The downside is, this will cause your code to wait on the
buffer and it might miss an important real-time event.

The line while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0); waits for an input from the
UART (possibly missing something) and rx = CT_UART.RBR_THR_REGISTERS; reads from the receive
register on the UART.

These simple lines should be enough to place in your code to print out debugging information.

Listing 4.75: uart2.pru0.c
1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/

→˓trees/master/pru_cape/pru_fw/PRU_Hardware_UART
2

3 #include <stdint.h>
4 #include <pru_uart.h>
5 #include "resource_table_empty.h"
6

7 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
8 * only going to send 8 at a time */
9 #define FIFO_SIZE 16

10 #define MAX_CHARS 8
11 #define BUFFER 40
12

13 //**
14 // Print Message Out
15 // This function take in a string literal of any size and then fill the
16 // TX FIFO when it's empty and waits until there is info in the RX FIFO
17 // before returning.
18 //**
19 void PrintMessageOut(volatile char* Message)
20 {
21 uint8_t cnt, index = 0;
22

23 while (1) {
24 cnt = 0;
25

26 /* Wait until the TX FIFO and the TX SR are completely empty */
27 while (!CT_UART.LSR_bit.TEMT);
28

29 while (Message[index] != NULL && cnt < MAX_CHARS) {
30 CT_UART.THR = Message[index];
31 index++;
32 cnt++;
33 }
34 if (Message[index] == NULL)
35 break;
36 }
37

38 /* Wait until the TX FIFO and the TX SR are completely empty */
(continues on next page)

4.2. PRU Cookbook 403

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

39 while (!CT_UART.LSR_bit.TEMT);
40

41 }
42

43 //**
44 // IEP Timer Config
45 // This function waits until there is info in the RX FIFO and then returns
46 // the first character entered.
47 //**
48 char ReadMessageIn(void)
49 {
50 while (!CT_UART.LSR_bit.DR);
51

52 return CT_UART.RBR_bit.DATA;
53 }
54

55 void main(void)
56 {
57 uint32_t i;
58 volatile uint32_t not_done = 1;
59

60 char rxBuffer[BUFFER];
61 rxBuffer[BUFFER-1] = NULL; // null terminate the string
62

63 /*** INITIALIZATION ***/
64

65 /* Set up UART to function at 115200 baud - DLL divisor is 104 at 16x␣
→˓oversample

66 * 192MHz / 104 / 16 = ~115200 */
67 CT_UART.DLL = 104;
68 CT_UART.DLH = 0;
69 CT_UART.MDR_bit.OSM_SEL = 0x0;
70

71 /* Enable Interrupts in UART module. This allows the main thread to poll for
72 * Receive Data Available and Transmit Holding Register Empty */
73 CT_UART.IER = 0x7;
74

75 /* If FIFOs are to be used, select desired trigger level and enable
76 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first before
77 * other bits are configured */
78 /* Enable FIFOs for now at 1-byte, and flush them */
79 CT_UART.FCR = (0x80) | (0x8) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO␣

→˓trigger
80

81 /* Choose desired protocol settings by writing to LCR */
82 /* 8-bit word, 1 stop bit, no parity, no break control and no divisor latch */
83 CT_UART.LCR = 3;
84

85 /* If flow control is desired write appropriate values to MCR. */
86 /* No flow control for now, but enable loopback for test */
87 CT_UART.MCR = 0x00;
88

89 /* Choose desired response to emulation suspend events by configuring
90 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_MGMT */
91 /* Allow UART to run free, enable UART TX/RX */
92 CT_UART.PWREMU_MGMT_bit.FREE = 0x1;

(continues on next page)

404 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

93 CT_UART.PWREMU_MGMT_bit.URRST = 0x1;
94 CT_UART.PWREMU_MGMT_bit.UTRST = 0x1;
95

96 /* Turn off RTS and CTS functionality */
97 CT_UART.MCR_bit.AFE = 0x0;
98 CT_UART.MCR_bit.RTS = 0x0;
99

100 /*** END INITIALIZATION ***/
101

102 while(1) {
103 /* Print out greeting message */
104 PrintMessageOut("Hello you are in the PRU UART demo test please enter␣

→˓some characters\r\n");
105

106 /* Read in characters from user, then echo them back out */
107 for (i = 0; i < BUFFER-1 ; i++) {
108 rxBuffer[i] = ReadMessageIn();
109 if(rxBuffer[i] == '\r') { // Quit early if ENTER is␣

→˓hit.
110 rxBuffer[i+1] = NULL;
111 break;
112 }
113 }
114

115 PrintMessageOut("you typed:\r\n");
116 PrintMessageOut(rxBuffer);
117 PrintMessageOut("\r\n");
118 }
119

120 /*** DONE SENDING DATA ***/
121 /* Disable UART before halting */
122 CT_UART.PWREMU_MGMT = 0x0;
123

124 /* Halt PRU core */
125 __halt();
126 }

uart2.pru0.c

If you want to try uart2.pru0.c, run the following:

Listing 4.76: make
bone$ *make TARGET=uart2.pru0*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=uart2.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/uart2.pru0.out to /lib/firmware/
→˓am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /dev/remoteproc/pruss-core0

You will see:

Type a few characters and hit ENTER. The PRU will playback what you typed, but it won’t echo it as you
type.

4.2. PRU Cookbook 405

BeagleBoard Docs, Release 0.0.9

Fig. 4.148: uart2.pru0.c output

uart2.pru0.c defines PrintMessageOut() which is passed a string that is sent to the UART. It takes
advantage of the eight character FIFO on the UART. Be careful using it because it also uses while (!
CT_UART.LSR_bit.TEMT); to wait for the FIFO to empty, which may cause your code to miss something.

uart2.pru1_0.c is the code that does it.

Listing 4.77: uart2.pru1_0.c
1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/

→˓trees/master/pru_cape/pru_fw/PRU_Hardware_UART
2

3 #include <stdint.h>
4 #include <pru_uart.h>
5 #include "resource_table_empty.h"
6

7 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
8 * only going to send 8 at a time */
9 #define FIFO_SIZE 16

10 #define MAX_CHARS 8
11 #define BUFFER 40
12

13 //**
14 // Print Message Out
15 // This function take in a string literal of any size and then fill the
16 // TX FIFO when it's empty and waits until there is info in the RX FIFO
17 // before returning.
18 //**
19 void PrintMessageOut(volatile char* Message)
20 {
21 uint8_t cnt, index = 0;
22

23 while (1) {
24 cnt = 0;
25

26 /* Wait until the TX FIFO and the TX SR are completely empty */
27 while (!CT_UART.LINE_STATUS_REGISTER_bit.TEMT);
28

29 while (Message[index] != NULL && cnt < MAX_CHARS) {
30 CT_UART.RBR_THR_REGISTERS = Message[index];
31 index++;
32 cnt++;
33 }

(continues on next page)

406 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

34 if (Message[index] == NULL)
35 break;
36 }
37

38 /* Wait until the TX FIFO and the TX SR are completely empty */
39 while (!CT_UART.LINE_STATUS_REGISTER_bit.TEMT);
40

41 }
42

43 //**
44 // IEP Timer Config
45 // This function waits until there is info in the RX FIFO and then returns
46 // the first character entered.
47 //**
48 char ReadMessageIn(void)
49 {
50 while (!CT_UART.LINE_STATUS_REGISTER_bit.DR);
51

52 return CT_UART.RBR_THR_REGISTERS_bit.DATA;
53 }
54

55 void main(void)
56 {
57 uint32_t i;
58 volatile uint32_t not_done = 1;
59

60 char rxBuffer[BUFFER];
61 rxBuffer[BUFFER-1] = NULL; // null terminate the string
62

63 /*** INITIALIZATION ***/
64

65 /* Set up UART to function at 115200 baud - DLL divisor is 104 at 16x␣
→˓oversample

66 * 192MHz / 104 / 16 = ~115200 */
67 CT_UART.DIVISOR_REGISTER_LSB_ = 104;
68 CT_UART.DIVISOR_REGISTER_MSB_ = 0;
69 CT_UART.MODE_DEFINITION_REGISTER_bit.OSM_SEL = 0x0;
70

71 /* Enable Interrupts in UART module. This allows the main thread to poll for
72 * Receive Data Available and Transmit Holding Register Empty */
73 CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;
74

75 /* If FIFOs are to be used, select desired trigger level and enable
76 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first before
77 * other bits are configured */
78 /* Enable FIFOs for now at 1-byte, and flush them */
79 CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER = (0x80) |␣

→˓(0x8) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO trigger
80

81 /* Choose desired protocol settings by writing to LCR */
82 /* 8-bit word, 1 stop bit, no parity, no break control and no divisor latch */
83 CT_UART.LINE_CONTROL_REGISTER = 3;
84

85 /* If flow control is desired write appropriate values to MCR. */
86 /* No flow control for now, but enable loopback for test */
87 CT_UART.MODEM_CONTROL_REGISTER = 0x00;

(continues on next page)

4.2. PRU Cookbook 407

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

88

89 /* Choose desired response to emulation suspend events by configuring
90 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_MGMT */
91 /* Allow UART to run free, enable UART TX/RX */
92 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.FREE = 0x1;
93 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.URRST = 0x1;
94 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.UTRST = 0x1;
95

96 /* Turn off RTS and CTS functionality */
97 CT_UART.MODEM_CONTROL_REGISTER_bit.AFE = 0x0;
98 CT_UART.MODEM_CONTROL_REGISTER_bit.RTS = 0x0;
99

100 /*** END INITIALIZATION ***/
101

102 while(1) {
103 /* Print out greeting message */
104 PrintMessageOut("Hello you are in the PRU UART demo test please enter␣

→˓some characters\r\n");
105

106 /* Read in characters from user, then echo them back out */
107 for (i = 0; i < BUFFER-1 ; i++) {
108 rxBuffer[i] = ReadMessageIn();
109 if(rxBuffer[i] == '\r') { // Quit early if ENTER is␣

→˓hit.
110 rxBuffer[i+1] = NULL;
111 break;
112 }
113 }
114

115 PrintMessageOut("you typed:\r\n");
116 PrintMessageOut(rxBuffer);
117 PrintMessageOut("\r\n");
118 }
119

120 /*** DONE SENDING DATA ***/
121 /* Disable UART before halting */
122 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;
123

124 /* Halt PRU core */
125 __halt();
126 }

uart2.pru1_0.c

More complex examples can be built using the principles shown in these examples.

Copyright
Listing 4.78: copyright.c

1 /*
2 * Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/
3 *
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:

(continues on next page)

408 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

8 *
9 * * Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * * Neither the name of Texas Instruments Incorporated nor the names of
18 * its contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */

copyright.c

4.2.5 Building Blocks - Applications

Here are some examples that use the basic PRU building blocks.

The following are resources used in this chapter.

Note: Resources

• PRU Optimizing C/C++ Compiler, v2.2, User’s Guide

• AM572x Technical Reference Manual (AI)

• AM335x Technical Reference Manual (All others)

• Exploring BeagleBone by Derek Molloy

• WS2812 Data Sheet

Memory Allocation

Problem I want to control where my variables are stored in memory.

Solution Each PRU has is own 8KB of data memory (Data Mem0 and Mem1) and 12KB of shared
memory (Shared RAM) as shown in PRU Block Diagram.

Each PRU accesses it’s own DRAM starting at location 0x0000_0000. Each PRU can also access the other
PRU’s DRAM starting at 0x0000_2000. Both PRUs access the shared RAM at 0x0001_0000. The compiler
can control where each of these memories variables are stored.

4.2. PRU Cookbook 409

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
http://exploringbeaglebone.com/
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

BeagleBoard Docs, Release 0.0.9

Fig. 4.149: PRU Block Diagram

shared.pro0.c - Examples of Using Different Memory Locations shows how to allocate seven variable in six
different locations.

Listing 4.79: shared.pro0.c - Examples of Using Different Memory
Locations

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/
→˓blobs/master/examples/am335x/PRU_access_const_table/PRU_access_const_table.c

2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include <pru_ctrl.h>
5 #include "resource_table_empty.h"
6

7 #define PRU_SRAM __far __attribute__((cregister("PRU_SHAREDMEM", near)))
8 #define PRU_DMEM0 __far __attribute__((cregister("PRU_DMEM_0_1", near)))
9 #define PRU_DMEM1 __far __attribute__((cregister("PRU_DMEM_1_0", near)))

10

11 /* NOTE: Allocating shared_x to PRU Shared Memory means that other PRU cores on
12 * the same subsystem must take care not to allocate data to that memory.
13 * Users also cannot rely on where in shared memory these variables␣

→˓are placed
14 * so accessing them from another PRU core or from the ARM is an undefined␣

→˓behavior.
15 */
16 volatile uint32_t shared_0;
17 PRU_SRAM volatile uint32_t shared_1;
18 PRU_DMEM0 volatile uint32_t shared_2;
19 PRU_DMEM1 volatile uint32_t shared_3;
20 #pragma DATA_SECTION(shared_4, ".bss")
21 volatile uint32_t shared_4;
22

23 /* NOTE: Here we pick where in memory to store shared_5. The stack and
24 * heap take up the first 0x200 words, so we must start after that.
25 * Since we are hardcoding where things are stored we can share
26 * this between the PRUs and the ARM.

(continues on next page)

410 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

27 */
28 #define PRU0_DRAM 0x00000 // Offset to DRAM
29 // Skip the first 0x200 bytes of DRAM since the Makefile allocates
30 // 0x100 for the STACK and 0x100 for the HEAP.
31 volatile unsigned int *shared_5 = (unsigned int *) (PRU0_DRAM + 0x200);
32

33

34 int main(void)
35 {
36 volatile uint32_t shared_6;
37 volatile uint32_t shared_7;
38 /***/
39 /* Access PRU peripherals using Constant Table & PRU header file */
40 /***/
41

42 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
43 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
44

45 /***/
46 /* Access PRU Shared RAM using Constant Table */
47 /***/
48

49 /* C28 defaults to 0x00000000, we need to set bits 23:8 to 0x0100 in order to␣
→˓have it point to 0x00010000 */

50 PRU0_CTRL.CTPPR0_bit.C28_BLK_POINTER = 0x0100;
51

52 shared_0 = 0xfeef;
53 shared_1 = 0xdeadbeef;
54 shared_2 = shared_2 + 0xfeed;
55 shared_3 = 0xdeed;
56 shared_4 = 0xbeed;
57 shared_5[0] = 0x1234;
58 shared_6 = 0x4321;
59 shared_7 = 0x9876;
60

61 /* Halt PRU core */
62 __halt();
63 }

shared.pru0.c

Discussion Here’s the line-by-line

4.2. PRU Cookbook 411

BeagleBoard Docs, Release 0.0.9

Table 4.14: Line-byline for shared.pru0.c
Line Explanation
7 PRU_SRAM is defined here. It will be used later to declare variables in the Shared RAM location

of memory. Section 5.5.2 on page 75 of the PRU Optimizing C/C++ Compiler, v2.2, User’s
Guide gives details of the command. The PRU_SHAREDMEM refers to the memory section
defined in am335x_pru.cmd on line 26.

8,
9

These are like the previous line except for the DMEM sections.

16 Variables declared outside of main() are put on the heap.
17 Adding PRU_SRAM has the variable stored in the shared memory.
18,
19

These are stored in the PRU’s local RAM.

20,
21

These lines are for storing in the .bss section as declared on line 74 of am335x_pru.cmd.

28-
31

All the previous examples direct the compiler to an area in memory and the compilers figures
out what to put where. With these lines we specify the exact location. Here are start with
the PRU_DRAM starting address and add 0x200 to it to avoid the stack and the heap. The
advantage of this technique is you can easily share these variables between the ARM and the
two PRUs.

36,
37

Variable declared inside main() go on the stack.

Caution: Using the technique of line 28-31 you can put variables anywhere, even where the compiler
has put them. Be careful, it’s easy to overwrite what the compiler has done

Compile and run the program.

bone$ *source shared_setup.sh*
TARGET=shared.pru0
Black Found
P9_31
Current mode for P9_31 is: pruout
Current mode for P9_31 is: pruout
P9_29
Current mode for P9_29 is: pruout
Current mode for P9_29 is: pruout
P9_30
Current mode for P9_30 is: pruout
Current mode for P9_30 is: pruout
P9_28
Current mode for P9_28 is: pruout
Current mode for P9_28 is: pruout
bone$ *make*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=shared.
→˓pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/shared.pru0.out to /lib/firmware/
→˓am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

412 Chapter 4. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 0.0.9

Now check the symbol table to see where things are allocated.

bone $ *grep shared /tmp/cloud9-examples/shared.pru0.map*
....
1 0000011c shared_0
2 00010000 shared_1
1 00000000 shared_2
1 00002000 shared_3
1 00000118 shared_4
1 00000120 shared_5

We see, shared_0 had no directives and was places in the heap that is 0x100 to 0x1ff. shared_1 was
directed to go to the SHAREDMEM, shared_2 to the start of the local DRAM (which is also the top of the
stack). shared_3 was placed in the DRAM of PRU 1, shared_4 was placed in the .bss section, which is
in the heap. Finally shared_5 is a pointer to where the value is stored.

Where are shared_6 and shared_7? They are declared inside main() and are therefore placed on the
stack at run time. The shared.map file shows the compile time allocations. We have to look in the
memory itself to see what happen at run time.

Let’s fire up prudebug (prudebug - A Simple Debugger for the PRU) to see where things are.

bone$ *sudo ./prudebug*
PRU Debugger v0.25
(C) Copyright 2011, 2013 by Arctica Technologies. All rights reserved.
Written by Steven Anderson

Using /dev/mem device.
Processor type AM335x
PRUSS memory address 0x4a300000
PRUSS memory length 0x00080000

offsets below are in 32-bit byte addresses (not ARM byte addresses)
PRU Instruction Data Ctrl
0 0x00034000 0x00000000 0x00022000
1 0x00038000 0x00002000 0x00024000

PRU0> *d 0*
Absolute addr = 0x0000, offset = 0x0000, Len = 16
[0x0000] 0x0000feed 0x00000000 0x00000000 0x00000000
[0x0010] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0020] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0030] 0x00000000 0x00000000 0x00000000 0x00000000

The value of shared_2 is in memory location 0.

PRU0> *dd 0x100*
Absolute addr = 0x0100, offset = 0x0000, Len = 16
[0x0100] 0x00000000 0x00000001 0x00000000 0x00000000
[0x0110] 0x00000000 0x00000000 0x0000beed 0x0000feef
[0x0120] 0x00000200 0x3ec71de3 0x1a013e1a 0xbf2a01a0
[0x0130] 0x111110b0 0x3f811111 0x55555555 0xbfc55555

There are shared_0 and shared_4 in the heap, but where is shared_6 and shared_7? They are supposed
to be on the stack that starts at 0.

PRU0> dd *0xc0*
Absolute addr = 0x00c0, offset = 0x0000, Len = 16
[0x00c0] 0x00000000 0x00000000 0x00000000 0x00000000

(continues on next page)

4.2. PRU Cookbook 413

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

[0x00d0] 0x00000000 0x00000000 0x00000000 0x00000000
[0x00e0] 0x00000000 0x00000000 0x00000000 0x00000000
[0x00f0] 0x00000000 0x00000000 0x00004321 0x00009876

There they are; the stack grows from the top. (The heap grows from the bottom.)

PRU0> dd *0x2000*
Absolute addr = 0x2000, offset = 0x0000, Len = 16
[0x2000] 0x0000deed 0x00000001 0x00000000 0x557fcfb5
[0x2010] 0xce97bd0f 0x6afb2c8f 0xc7f35df4 0x5afb6dcb
[0x2020] 0x8dec3da3 0xe39a6756 0x642cb8b8 0xcb6952c0
[0x2030] 0x2f22ebda 0x548d97c5 0x9241786f 0x72dfeb86

And there is PRU 1’s memory with shared_3. And finally the shared memory.

PRU0> *dd 0x10000*
Absolute addr = 0x10000, offset = 0x0000, Len = 16
[0x10000] 0xdeadbeef 0x0000feed 0x00000000 0x68c44f8b
[0x10010] 0xc372ba7e 0x2ffa993b 0x11c66da5 0xfbf6c5d7
[0x10020] 0x5ada3fcf 0x4a5d0712 0x48576fb7 0x1004796b
[0x10030] 0x2267ebc6 0xa2793aa1 0x100d34dc 0x9ca06d4a

The compiler offers great control over where variables are stored. Just be sure if you are hand picking
where things are put, not to put them in places used by the compiler.

Auto Initialization of built-in LED Triggers

Problem I see the built-in LEDs blink to their own patterns. How do I turn this off? Can this be
automated?

Solution Each built-in LED has a default action (trigger) when the Bone boots up. This is controlled by
/sys/class/leds.

bone$ *cd /sys/class/leds*
bone$ *ls*
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

Here you see a directory for each of the LEDs. Let’s pick USR1.

bone$ *cd beaglebone\:green\:usr1*
bone$ *ls*
brightness device max_brightness power subsystem trigger uevent
bone$ *cat trigger*
none usb-gadget usb-host rfkill-any rfkill-none kbd-scrolllock kbd-numlock
kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock
kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock *[mmc0]* timer
oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat
backlight gpio cpu cpu0 activity default-on panic netdev phy0rx phy0tx
phy0assoc phy0radio rfkill0

Notice [mmc0] is in brackets. This means it’s the current trigger; it flashes when the built-in flash memory
is in use. You can turn this off using:

414 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

bone$ *echo none > trigger*
bone$ *cat trigger*
[none] usb-gadget usb-host rfkill-any rfkill-none kbd-scrolllock kbd-numlock
kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock
kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock mmc0 timer
oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat
backlight gpio cpu cpu0 activity default-on panic netdev phy0rx phy0tx
phy0assoc phy0radio rfkill0

Now it is no longer flashing.

How can this be automated so when code is run that needs the trigger off, it’s turned off automatically?
Here’s a trick. Include the following in your code.

1 #pragma DATA_SECTION(init_pins, ".init_pins")
2 #pragma RETAIN(init_pins)
3 const char init_pins[] =
4 "/sys/class/leds/beaglebone:green:usr3/trigger\0none\0" \
5 "\0\0";

Lines 3 and 4 declare the array init_pins to have an entry which is the path to trigger and the value
that should be ‘echoed’ into it. Both are NULL terminated. Line 1 says to put this in a section called
.init_pins and line 2 says to RETAIN it. That is don’t throw it away if it appears to be unused.

Discussion The above code stores this array in the .out file thats created, but that’s not enough. You
need to run write_init_pins.sh on the .out file to make the code work. Fortunately the Makefile always
runs it.

Listing 4.80: write_init_pins.sh
1 #!/bin/bash
2 init_pins=$(readelf -x .init_pins $1 | grep 0x000 | cut -d' ' -f4-7 | xxd -r -p | tr

→˓'\0' '\n' | paste - -)
3 while read -a line; do
4 if [${#line[@]} == 2]; then
5 echo writing \"${line[1]}\" to \"${line[0]}\"
6 echo ${line[1]} > ${line[0]}
7 sleep 0.1
8 fi
9 done <<< "$init_pins"

write_init_pins.sh

The readelf command extracts the path and value from the .out file.

bone$ *readelf -x .init_pins /tmp/pru0-gen/shared.out*

Hex dump of section '.init_pins':
0x000000c0 2f737973 2f636c61 73732f6c 6564732f /sys/class/leds/
0x000000d0 62656167 6c65626f 6e653a67 7265656e beaglebone:green
0x000000e0 3a757372 332f7472 69676765 72006e6f :usr3/trigger.no
0x000000f0 6e650000 0000 ne....

The rest of the command formats it. Finally line 6 echos the none into the path.

This can be generalized to initialize other things. The point is, the .out file contains everything needed
to run the executable.

4.2. PRU Cookbook 415

BeagleBoard Docs, Release 0.0.9

PWM Generator

One of the simplest things a PRU can to is generate a simple signal starting with a single channel PWM
that has a fixed frequency and duty cycle and ending with a multi channel PWM that the ARM can change
the frequency and duty cycle on the fly.

Problem I want to generate a PWM signal that has a fixed frequency and duty cycle.

Solution The solution is fairly easy, but be sure to check the Discussion section for details on making it
work.

pwm1.pru0.c shows the code.

Warning: This code is for the BeagleBone Black. See pwm1.pru1_1.c for an example that works on
the AI.

Listing 4.81: pwm1.pru0.c
1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include "resource_table_empty.h"
4 #include "prugpio.h"
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 void main(void)
10 {
11 uint32_t gpio = P9_31; // Select which pin to toggle.;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 while(1) {
17 __R30 |= gpio; // Set the GPIO pin to 1
18 __delay_cycles(100000000);
19 __R30 &= ~gpio; // Clear the GPIO pin
20 __delay_cycles(100000000);
21 }
22 }

pwm1.pru0.c

To run this code you need to configure the pin muxes to output the PRU. If you are on the Black run

bone$ config-pin P9_31 pruout

On the Pocket run

bone$ config-pin P1_36 pruout

Note: See Configuring pins on the AI via device trees for configuring pins on the AI.

Then, tell Makefile which PRU you are compiling for and what your target file is

416 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

bone$ export TARGET=pwm1.pru0

Now you are ready to compile

bone$ make
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=pwm1.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/pwm1.pru0.out to /lib/firmware/
→˓am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

Now attach an LED (or oscilloscope) to P9_31 on the Black or P1.36 on the Pocket. You should see a
squarewave.

Discussion Since this is our first example we’ll discuss the many parts in detail.

Listing 4.82: pwm1.pru0.c
1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include "resource_table_empty.h"
4 #include "prugpio.h"
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 void main(void)
10 {
11 uint32_t gpio = P9_31; // Select which pin to toggle.;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 while(1) {
17 __R30 |= gpio; // Set the GPIO pin to 1
18 __delay_cycles(100000000);
19 __R30 &= ~gpio; // Clear the GPIO pin
20 __delay_cycles(100000000);
21 }
22 }

pwm1.pru0.c

Line-by-line of pwm1.pru0.c is a line-by-line expanation of the c code.

Table 4.15: Line-by-line of pwm1.pru0.c
Line Explanation
1 Standard c-header include
2 Include for the PRU. The compiler knows where to find this since the Makefile says to look for

includes in /usr/lib/ti/pru-software-support-package
3 The file resource_table_empty.h is used by the PRU loader. Generally we’ll use the same file, and

don’t need to modify it.
4 This include has addresses for the GPIO ports and some bit positions for some of the headers.

4.2. PRU Cookbook 417

BeagleBoard Docs, Release 0.0.9

Here’s what’s in resource_table_empty.h

Listing 4.83: resource_table_empty.c
1 /*
2 * ======== resource_table_empty.h ========
3 *
4 * Define the resource table entries for all PRU cores. This will be
5 * incorporated into corresponding base images, and used by the remoteproc
6 * on the host-side to allocated/reserve resources. Note the remoteproc
7 * driver requires that all PRU firmware be built with a resource table.
8 *
9 * This file contains an empty resource table. It can be used either as:

10 *
11 * 1) A template, or
12 * 2) As-is if a PRU application does not need to configure PRU_INTC
13 * or interact with the rpmsg driver
14 *
15 */
16

17 #ifndef _RSC_TABLE_PRU_H_
18 #define _RSC_TABLE_PRU_H_
19

20 #include <stddef.h>
21 #include <rsc_types.h>
22

23 struct my_resource_table {
24 struct resource_table base;
25

26 uint32_t offset[1]; /* Should match 'num' in actual definition */
27 };
28

29 #pragma DATA_SECTION(pru_remoteproc_ResourceTable, ".resource_table")
30 #pragma RETAIN(pru_remoteproc_ResourceTable)
31 struct my_resource_table pru_remoteproc_ResourceTable = {
32 1, /* we're the first version that implements this */
33 0, /* number of entries in the table */
34 0, 0, /* reserved, must be zero */
35 0, /* offset[0] */
36 };
37

38 #endif /* _RSC_TABLE_PRU_H_ */
39

resource_table_empty.c

Table 4.16: Line-by-line (continuted)
Line Explanation
6-7 __R30 and __R31 are two variables that refer to the PRU output (__R30) and input (__R31)

registers. When you write something to __R30 it will show up on the corresponding output
pins. When you read from __R31 you read the data on the input pins. NOTE: Both names begin
with two underscore’s. Section 5.7.2 of the PRU Optimizing C/C++ Compiler, v2.2, User’s
Guide gives more details.

11 This line selects which GPIO pin to toggle. The table below shows which bits in __R30 map to
which pins

14 CT_CFG.SYSCFG_bit.STANDBY_INIT is set to 0 to enable the OCP master port. More details on
this and thousands of other regesters see the TI AM335x TRM. Section 4 is on the PRU and
section 4.5 gives details for all the registers.

418 Chapter 4. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 0.0.9

Bit 0 is the LSB.

Table 4.17: Mapping bit positions to pin names
PRU Bit Black pin Pocket pin
0 0 P9_31 P1.36
0 1 P9_29 P1.33
0 2 P9_30 P2.32
0 3 P9_28 P2.30
0 4 P9_42b P1.31
0 5 P9_27 P2.34
0 6 P9_41b P2.28
0 7 P9_25 P1.29
0 14 P8_12(out) P8_16(in) P2.24
0 15 P8_11(out) P8_15(in) P2.33

1 0 P8_45
1 1 P8_46
1 2 P8_43
1 3 P8_44
1 4 P8_41
1 5 P8_42
1 6 P8_39
1 7 P8_40
1 8 P8_27 P2.35
1 9 P8_29 P2.01
1 10 P8_28 P1.35
1 11 P8_30 P1.04
1 12 P8_21
1 13 P8_20
1 14 P1.32
1 15 P1.30
1 16 P9_26(in)|

Note: See Configuring pins on the AI via device trees for all the PRU pins on the AI.

Since we are running on PRU 0, and we’re using 0x0001, that is bit 0, we’ll be toggling P9_31.

Table 4.18: Line-by-line (continued again)
Line Explanation
17 Here is where the action is. This line reads __R30 and then ORs it with gpio, setting the bits

where there is a 1 in gpio and leaving the bits where there is a 0. Thus we are setting the bit
we selected. Finally the new value is written back to __R30.

18 __delay_cycles is an ((instrinsic function)) that delays with number of cycles passed to it.
Each cycle is 5ns, and we are delaying 100,000,000 cycles which is 500,000,000ns, or 0.5
seconds.

19 This is like line 17, but ~gpio inverts all the bits in gpio so that where we had a 1, there is now
a 0. This 0 is then ANDed with __R30 setting the corresponding bit to 0. Thus we are clearing
the bit we selected.

Tip: You can read more about instrinsics in section 5.11 of the (PRU Optimizing C/C++ Compiler, v2.2,
User’s Guide.)

When you run this code and look at the output you will see something like the following figure.

4.2. PRU Cookbook 419

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 0.0.9

Fig. 4.150: Output of pwm1.pru0.c with 100,000,000 delays cycles giving a 1s period

420 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Notice the on time (+Width(1)) is 500ms, just as we predicted. The off time is 498ms, which is only 2ms
off from our prediction. The standard deviation is 0, or only 380as, which is 380 * 10^-18^!.

You can see how fast the PRU can run by setting both of the __delay_cycles to 0. This results in the
next figure.

Fig. 4.151: Output of pwm1.pru0c with 0 delay cycles

Notice the period is 15ns which gives us a frequency of about 67MHz. At this high frequency the bread-
board that I’m using distorts the waveform so it’s no longer a squarewave. The on time is 5.3ns and the
off time is 9.8ns. That means __R30 |= gpio took only one 5ns cycle and __R30 &= ~gpio also only
took one cycle, but there is also an extra cycle needed for the loop. This means the compiler was able to
implement the while loop in just three 5ns instructions! Not bad.

We want a square wave, so we need to add a delay to correct for the delay of looping back.

Here’s the code that does just that.

Listing 4.84: pwm2.pru0.c
1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include "resource_table_empty.h"
4 #include "prugpio.h"
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

(continues on next page)

4.2. PRU Cookbook 421

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

9 void main(void)
10 {
11 uint32_t gpio = P9_31; // Select which pin to toggle.;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 while (1) {
17 __R30 |= gpio; // Set the GPIO pin to 1
18 __delay_cycles(1); // Delay one cycle to correct for loop time
19 __R30 &= ~gpio; // Clear the GPIO pin
20 __delay_cycles(0);
21 }
22 }

pwm2.pru0.c

The output now looks like:

Fig. 4.152: Output of pwm2.pru0.c corrected delay

It’s not hard to adjust the two __delay_cycles to get the desired frequency and duty cycle.

422 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Controlling the PWM Frequency

Problem You would like to control the frequency and duty cycle of the PWM without recompiling.

Solution Have the PRU read the on and off times from a shared memory location. Each PRU has is
own 8KB of data memory (DRAM) and 12KB of shared memory (SHAREDMEM) that the ARM processor
can also access. See PRU Block Diagram.

The DRAM 0 address is 0x0000 for PRU 0. The same DRAM appears at address 0x4A300000 as seen
from the ARM processor.

Tip: See page 184 of the AM335x TRM (184).

We take the previous PRU code and add the lines

define PRU0_DRAM 0x00000 // Offset to DRAM
volatile unsigned int *pru0_dram = PRU0_DRAM;

to define a pointer to the DRAM.

Note: The volatile keyword is used here to tell the compiler the value this points to may change, so
don’t make any assumptions while optimizing.

Later in the code we use

pru0_dram[ch] = on[ch]; // Copy to DRAM0 so the ARM can change it
pru0_dram[ch+MAXCH] = off[ch]; // Copy after the on array

to write the on and off times to the DRAM. Then inside the while loop we use

onCount[ch] = pru0_dram[2*ch]; // Read from DRAM0
offCount[ch]= pru0_dram[2*ch+1];

to read from the DRAM when reseting the counters. Now, while the PRU is running, the ARM can write
values into the DRAM and change the PWM on and off times. pwm4.pru0.c is the whole code.

Listing 4.85: pwm4.pru0.c
1 // This code does MAXCH parallel PWM channels.
2 // It's period is 3 us
3 #include <stdint.h>
4 #include <pru_cfg.h>
5 #include "resource_table_empty.h"
6

7 #define PRU0_DRAM 0x00000 // Offset to DRAM
8 // Skip the first 0x200 byte of DRAM since the Makefile allocates
9 // 0x100 for the STACK and 0x100 for the HEAP.

10 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
11

12 #define MAXCH 4 // Maximum number of channels per PRU
13

14 volatile register uint32_t __R30;
15 volatile register uint32_t __R31;
16

17 void main(void)
18 {

(continues on next page)

4.2. PRU Cookbook 423

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

19 uint32_t ch;
20 uint32_t on[] = {1, 2, 3, 4}; // Number of cycles to stay on
21 uint32_t off[] = {4, 3, 2, 1}; // Number to stay off
22 uint32_t onCount[MAXCH]; // Current count
23 uint32_t offCount[MAXCH];
24

25 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
26 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
27

28 // Initialize the channel counters.
29 for(ch=0; ch<MAXCH; ch++) {
30 pru0_dram[2*ch] = on[ch]; // Copy to DRAM0 so the␣

→˓ARM can change it
31 pru0_dram[2*ch+1] = off[ch]; // Interleave the on and off␣

→˓values
32 onCount[ch] = on[ch];
33 offCount[ch]= off[ch];
34 }
35

36 while (1) {
37 for(ch=0; ch<MAXCH; ch++) {
38 if(onCount[ch]) {
39 onCount[ch]--;
40 __R30 |= 0x1<<ch; // Set the GPIO pin␣

→˓to 1
41 } else if(offCount[ch]) {
42 offCount[ch]--;
43 __R30 &= ~(0x1<<ch); // Clear the GPIO pin
44 } else {
45 onCount[ch] = pru0_dram[2*ch]; // Read␣

→˓from DRAM0
46 offCount[ch]= pru0_dram[2*ch+1];
47 }
48 }
49 }
50 }

pwm4.pru0.c

Here is code that runs on the ARM side to set the on and off time values.

Listing 4.86: pwm-test.c
1 /*
2 *
3 * pwm tester
4 * The on cycle and off cycles are stored in each PRU's Data memory
5 *
6 */
7

8 #include <stdio.h>
9 #include <fcntl.h>

10 #include <sys/mman.h>
11

12 #define MAXCH 4
13

14 #define PRU_ADDR 0x4A300000 // Start of PRU memory Page␣
→˓184 am335x TRM

(continues on next page)

424 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

15 #define PRU_LEN 0x80000 // Length of␣
→˓PRU memory

16 #define PRU0_DRAM 0x00000 // Offset to DRAM
17 #define PRU1_DRAM 0x02000
18 #define PRU_SHAREDMEM 0x10000 // Offset to shared␣

→˓memory
19

20 unsigned int *pru0DRAM_32int_ptr; // Points to the start of␣
→˓local DRAM

21 unsigned int *pru1DRAM_32int_ptr; // Points to the start of␣
→˓local DRAM

22 unsigned int *prusharedMem_32int_ptr; // Points to the start of the␣
→˓shared memory

23

24 /***
25 * int start_pwm_count(int ch, int countOn, int countOff)
26 *
27 * Starts a pwm pulse on for countOn and off for countOff to a single channel (ch)
28 ***/
29 int start_pwm_count(int ch, int countOn, int countOff) {
30 unsigned int *pruDRAM_32int_ptr = pru0DRAM_32int_ptr;
31

32 printf("countOn: %d , countOff: %d , count: %d \n",
33 countOn, countOff, countOn+countOff);
34 // write to PRU shared memory
35 pruDRAM_32int_ptr[2*(ch)+0] = countOn; // On time
36 pruDRAM_32int_ptr[2*(ch)+1] = countOff; // Off time
37 return 0;
38 }
39

40 int main(int argc, char *argv[])
41 {
42 unsigned int *pru; // Points to start of PRU memory.
43 int fd;
44 printf("Servo tester\n");
45

46 fd = open ("/dev/mem", O_RDWR | O_SYNC);
47 if (fd == -1) {
48 printf ("ERROR: could not open /dev/mem.\n\n");
49 return 1;
50 }
51 pru = mmap (0, PRU_LEN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, PRU_ADDR);
52 if (pru == MAP_FAILED) {
53 printf ("ERROR: could not map memory.\n\n");
54 return 1;
55 }
56 close(fd);
57 printf ("Using /dev/mem.\n");
58

59 pru0DRAM_32int_ptr = pru + PRU0_DRAM/4 + 0x200/4; // Points to␣
→˓0x200 of PRU0 memory

60 pru1DRAM_32int_ptr = pru + PRU1_DRAM/4 + 0x200/4; // Points to␣
→˓0x200 of PRU1 memory

61 prusharedMem_32int_ptr = pru + PRU_SHAREDMEM/4; // Points to start of␣
→˓shared memory

62

(continues on next page)

4.2. PRU Cookbook 425

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

63 int i;
64 for(i=0; i<MAXCH; i++) {
65 start_pwm_count(i, i+1, 20-(i+1));
66 }
67

68 if(munmap(pru, PRU_LEN)) {
69 printf("munmap failed\n");
70 } else {
71 printf("munmap succeeded\n");
72 }
73 }
74

pwm-test.c

A quick check on the ‘scope shows Four Channel PWM with ARM control.

Fig. 4.153: Four Channel PWM with ARM control

From the ‘scope you see a 1 cycle on time results in a 450ns wide pulse and a 3.06us period is 326KHz,
much slower than the 10ns pulse we saw before. But it may be more than fast enough for many applica-
tions. For example, most servos run at 50Hz.

But we can do better.

426 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Loop Unrolling for Better Performance

Problem The ARM controlled PRU code runs too slowly.

Solution Simple loop unrolling can greatly improve the speed. pwm5.pru0.c is our unrolled version.

Listing 4.87: pwm5.pru0.c Unrolled
1 // This code does MAXCH parallel PWM channels.
2 // It's period is 510ns.
3 #include <stdint.h>
4 #include <pru_cfg.h>
5 #include "resource_table_empty.h"
6

7 #define PRU0_DRAM 0x00000 // Offset to DRAM
8 // Skip the first 0x200 byte of DRAM since the Makefile allocates
9 // 0x100 for the STACK and 0x100 for the HEAP.

10 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
11

12 #define MAXCH 4 // Maximum number of channels per PRU
13

14 #define update(ch) \
15 if(onCount[ch]) { \
16 onCount[ch]--; \
17 __R30 |= 0x1<<ch; \
18 } else if(offCount[ch]) { \
19 offCount[ch]--; \
20 __R30 &= ~(0x1<<ch); \
21 } else { \
22 onCount[ch] = pru0_dram[2*ch]; \
23 offCount[ch]= pru0_dram[2*ch+1]; \
24 }
25

26 volatile register uint32_t __R30;
27 volatile register uint32_t __R31;
28

29 void main(void)
30 {
31 uint32_t ch;
32 uint32_t on[] = {1, 2, 3, 4};
33 uint32_t off[] = {4, 3, 2, 1};
34 uint32_t onCount[MAXCH], offCount[MAXCH];
35

36 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
37 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
38

39 #pragma UNROLL(MAXCH)
40 for(ch=0; ch<MAXCH; ch++) {
41 pru0_dram[2*ch] = on[ch]; // Copy to DRAM0 so the␣

→˓ARM can change it
42 pru0_dram[2*ch+1] = off[ch]; // Interleave the on and off␣

→˓values
43 onCount[ch] = on[ch];
44 offCount[ch]= off[ch];
45 }
46

47 while (1) {
(continues on next page)

4.2. PRU Cookbook 427

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

48 update(0)
49 update(1)
50 update(2)
51 update(3)
52 }
53 }

pwm5.pru0.c

The output of pwm5.pru0.c is in the figure below.

Fig. 4.154: pwm5.pru0.c Unrolled version of pwm4.pru0.c

It’s running about 6 times faster than pwm4.pru0.c.

Table 4.19: pwm4.pru0.c vs. pwm5.pru0.c
Mea-
sure

pwm4.pru0.c
time

pwm5.pru0.c
time

Speedup pwm5.pru0.c w/o UN-
ROLL

Speedup

Period 3.06μs 510ns 6x 1.81μs ~1.7x
Width+ 450ns 70ns ~6x 1.56μs ~.3x

Not a bad speed up for just a couple of simple changes.

Discussion Here’s how it works. First look at line 39. You see #pragma UNROLL(MAXCH) which is a
pragma that tells the compiler to unroll the loop that follows. We are unrolling it MAXCH times (four times

428 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

in this example). Just removing the pragma causes the speedup compared to the pwm4.pru0.c case to
drop from 6x to only 1.7x.

We also have our for loop inside the while loop that can be unrolled. Unfortunately UNROLL() doesn’t
work on it, therefore we have to do it by hand. We could take the loop and just copy it three times, but
that would make it harder to maintain the code. Instead I convered the loop into a #define (lines 14-24)
and invoked update() as needed (lines 48-51). This is not a function call. Whenever the preprocessor
sees the update() it copies the code an then it’s compiled.

This unrolling gets us an impressive 6x speedup.

Making All the Pulses Start at the Same Time

Problem I have a mutlichannel PWM working, but the pulses aren’t synchronized, that is they don’t all
start at the same time.

Solution pwm5.pru0 Zoomed In is a zoomed in version of the previous figure. Notice the pulse in each
channel starts about 15ns later than the channel above it.

Fig. 4.155: pwm5.pru0 Zoomed In

The solution is to declare Rtmp (line 35) which holds the value for __R30.

4.2. PRU Cookbook 429

BeagleBoard Docs, Release 0.0.9

Listing 4.88: pwm6.pru0.c Sync’ed Version of pwm5.pru0.c
1 // This code does MAXCH parallel PWM channels.
2 // All channels start at the same time. It's period is 510ns
3 #include <stdint.h>
4 #include <pru_cfg.h>
5 #include "resource_table_empty.h"
6

7 #define PRU0_DRAM 0x00000 // Offset to DRAM
8 // Skip the first 0x200 byte of DRAM since the Makefile allocates
9 // 0x100 for the STACK and 0x100 for the HEAP.

10 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
11

12 #define MAXCH 4 // Maximum number of channels per PRU
13

14 #define update(ch) \
15 if(onCount[ch]) { \
16 onCount[ch]--; \
17 Rtmp |= 0x1<<ch; \
18 } else if(offCount[ch]) { \
19 offCount[ch]--; \
20 Rtmp &= ~(0x1<<ch); \
21 } else { \
22 onCount[ch] = pru0_dram[2*ch]; \
23 offCount[ch]= pru0_dram[2*ch+1]; \
24 }
25

26 volatile register uint32_t __R30;
27 volatile register uint32_t __R31;
28

29 void main(void)
30 {
31 uint32_t ch;
32 uint32_t on[] = {1, 2, 3, 4};
33 uint32_t off[] = {4, 3, 2, 1};
34 uint32_t onCount[MAXCH], offCount[MAXCH];
35 register uint32_t Rtmp;
36

37 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
38 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
39

40 #pragma UNROLL(MAXCH)
41 for(ch=0; ch<MAXCH; ch++) {
42 pru0_dram[2*ch] = on[ch]; // Copy to DRAM0 so the␣

→˓ARM can change it
43 pru0_dram[2*ch+1] = off[ch]; // Interleave the on and off␣

→˓values
44 onCount[ch] = on[ch];
45 offCount[ch]= off[ch];
46 }
47 Rtmp = __R30;
48

49 while (1) {
50 update(0)
51 update(1)
52 update(2)
53 update(3)

(continues on next page)

430 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

54 __R30 = Rtmp;
55 }
56 }

pwm6.pru0.c Sync'ed Version of pwm5.pru0.c

Each channel writes it’s value to Rtmp (lines 17 and 20) and then after each channel has updated, Rtmp
is copied to __R30 (line 54).

Discussion The following figure shows the channel are sync’ed. Though the period is slightly longer
than before.

Fig. 4.156: pwm6.pru0 Synchronized Channels

Adding More Channels via PRU 1

Problem You need more output channels, or you need to shorten the period.

Solution PRU 0 can output up to eight output pins (see Mapping bit positions to pin names). The code
presented so far can be easily extended to use the eight output pins.

But what if you need more channels? You can always use PRU1, it has 14 output pins.

4.2. PRU Cookbook 431

BeagleBoard Docs, Release 0.0.9

Or, what if four channels is enough, but you need a shorter period. Everytime you add a channel, the
overall period gets longer. Twice as many channels means twice as long a period. If you move half the
channels to PRU 1, you will make the period half as long.

Here’s the code (pwm7.pru0.c)

Listing 4.89: pwm7.pru0.c Using Both PRUs
1 // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
2 // All channels start at the same time. But the PRU 1 ch have a difference period
3 // It's period is 370ns
4 #include <stdint.h>
5 #include <pru_cfg.h>
6 #include "resource_table_empty.h"
7

8 #define PRUNUM 0
9

10 #define PRU0_DRAM 0x00000 // Offset to DRAM
11 // Skip the first 0x200 byte of DRAM since the Makefile allocates
12 // 0x100 for the STACK and 0x100 for the HEAP.
13 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
14

15 #define MAXCH 2 // Maximum number of channels per PRU
16

17 #define update(ch) \
18 if(onCount[ch]) { \
19 onCount[ch]--; \
20 Rtmp |= 0x1<<ch; \
21 } else if(offCount[ch]) { \
22 offCount[ch]--; \
23 Rtmp &= ~(0x1<<ch); \
24 } else { \
25 onCount[ch] = pru0_dram[2*ch]; \
26 offCount[ch]= pru0_dram[2*ch+1]; \
27 }
28

29 volatile register uint32_t __R30;
30 volatile register uint32_t __R31;
31

32 void main(void)
33 {
34 uint32_t ch;
35 uint32_t on[] = {1, 2, 3, 4};
36 uint32_t off[] = {4, 3, 2, 1};
37 uint32_t onCount[MAXCH], offCount[MAXCH];
38 register uint32_t Rtmp;
39

40 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
41 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
42

43 #pragma UNROLL(MAXCH)
44 for(ch=0; ch<MAXCH; ch++) {
45 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to DRAM0 so␣

→˓the ARM can change it
46 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; // Interleave the on␣

→˓and off values
47 onCount[ch] = on [ch+PRUNUM*MAXCH];
48 offCount[ch]= off[ch+PRUNUM*MAXCH];

(continues on next page)

432 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

49 }
50 Rtmp = __R30;
51

52 while (1) {
53 update(0)
54 update(1)
55 __R30 = Rtmp;
56 }
57 }

pwm7.pru0.c Using Both PRUs

Be sure to run pwm7_setup.sh to get the correct pins configured.

Listing 4.90: pwm7_setup.sh
1 #!/bin/bash
2 #
3 export TARGET=pwm7.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = "Black"]; then

10 echo " Found"
11 pins="P9_31 P9_29 P8_45 P8_46"
12 elif [$machine = "Blue"]; then
13 echo " Found"
14 pins=""
15 elif [$machine = "PocketBeagle"]; then
16 echo " Found"
17 pins="P1_36 P1_33"
18 else
19 echo " Not Found"
20 pins=""
21 fi
22

23 for pin in $pins
24 do
25 echo $pin
26 config-pin $pin pruout
27 config-pin -q $pin
28 done

pw7_setup.sh

This makes sure the PRU 1 pins are properly configured.

Here we have a second pwm7 file. pwm7.pru1.c is identical to pwm7.pru0.c except PRUNUM is set to 1,
instead of 0.

Compile and run the two files with:

bone$ *make TARGET=pwm7.pru0; make TARGET=pwm7.pru1*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=pwm7.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/pwm7.pru0.out to /lib/firmware/
→˓am335x-pru0-fw

(continues on next page)

4.2. PRU Cookbook 433

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=pwm7.pru1
- Stopping PRU 1
- copying firmware file /tmp/cloud9-examples/pwm7.pru1.out to /lib/firmware/
→˓am335x-pru1-fw
write_init_pins.sh
- Starting PRU 1
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 1
PRU_DIR = /sys/class/remoteproc/remoteproc2

This will first stop, compile and start PRU 0, then do the same for PRU 1.

Moving half of the channels to PRU1 dropped the period from 510ns to 370ns, so we gained a bit.

Discussion There weren’t many changes to be made. Line 15 we set MAXCH to 2. Lines 44-48 is where
the big change is.

pru0_dram[2*ch] = on [ch+PRUNUN*MAXCH]; // Copy to DRAM0 so the ARM can␣
→˓change it
pru0_dram[2*ch+1] = off[ch+PRUNUN*MAXCH]; // Interleave the on and off values
onCount[ch] = on [ch+PRUNUN*MAXCH];
offCount[ch]= off[ch+PRUNUN*MAXCH];

If we are compiling for PRU 0, on[ch+PRUNUN*MAXCH] becomes on[ch+0*2] which is on[ch] which is
what we had before. But now if we are on PRU 1 it becomes on[ch+1*2] which is on[ch+2]. That means
we are picking up the second half of the on and off arrays. The first half goes to PRU 0, the second to
PRU 1. So the same code can be used for both PRUs, but we get slightly different behavior.

Running the code you will see the next figure.

What’s going on there, the first channels look fine, but the PRU 1 channels are blurred. To see what’s
happening, let’s stop the oscilloscope.

The stopped display shows that the four channels are doing what we wanted, except The PRU 0 channels
have a period of 370ns while the PRU 1 channels at 330ns. It appears the compiler has optimied the two
PRUs slightly differenty.

Synchronizing Two PRUs

Problem I need to synchronize the two PRUs so they run together.

Solution Use the Interrupt Controller (INTC). It allows one PRU to signal the other. Page 225 of the
AM335x TRM 225 has details of how it works. Here’s the code for PRU 0, which at the end of the while
loop signals PRU 1 to start(pwm8.pru0.c).

434 Chapter 4. Books

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 0.0.9

Fig. 4.157: pwm7.pru0 Two PRUs running

4.2. PRU Cookbook 435

BeagleBoard Docs, Release 0.0.9

Fig. 4.158: pwm7.pru0 Two PRUs stopped

436 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Listing 4.91: pwm8.pru0.c PRU 0 using INTC to send a signal to
PRU 1

1 // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
2 // All channels start at the same time.
3 // It's period is 430ns
4 #include <stdint.h>
5 #include <pru_cfg.h>
6 #include <pru_intc.h>
7 #include <pru_ctrl.h>
8 #include "resource_table_empty.h"
9

10 #define PRUNUM 0
11

12 #define PRU0_DRAM 0x00000 // Offset to DRAM
13 // Skip the first 0x200 byte of DRAM since the Makefile allocates
14 // 0x100 for the STACK and 0x100 for the HEAP.
15 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
16

17 #define MAXCH 2 // Maximum number of channels per PRU
18

19 #define update(ch) \
20 if(onCount[ch]) { \
21 onCount[ch]--; \
22 Rtmp |= 0x1<<ch; \
23 } else if(offCount[ch]) { \
24 offCount[ch]--; \
25 Rtmp &= ~(0x1<<ch); \
26 } else { \
27 onCount[ch] = pru0_dram[2*ch]; \
28 offCount[ch]= pru0_dram[2*ch+1]; \
29 }
30

31 volatile register uint32_t __R30;
32 volatile register uint32_t __R31;
33

34 // Initialize interupts so the PRUs can be syncronized.
35 // PRU1 is started first and then waits for PRU0
36 // PRU0 is then started and tells PRU1 when to start going
37 void configIntc(void) {
38 __R31 = 0x00000000; // Clear any␣

→˓pending PRU-generated events
39 CT_INTC.CMR4_bit.CH_MAP_16 = 1; // Map event 16 to channel 1
40 CT_INTC.HMR0_bit.HINT_MAP_1 = 1; // Map channel 1 to host 1
41 CT_INTC.SICR = 16; // Ensure event 16␣

→˓is cleared
42 CT_INTC.EISR = 16; // Enable event 16
43 CT_INTC.HIEISR |= (1 << 0); // Enable Host interrupt 1
44 CT_INTC.GER = 1; // Globally enable␣

→˓host interrupts
45 }
46

47 void main(void)
48 {
49 uint32_t ch;
50 uint32_t on[] = {1, 2, 3, 4};
51 uint32_t off[] = {4, 3, 2, 1};
52 uint32_t onCount[MAXCH], offCount[MAXCH];

(continues on next page)

4.2. PRU Cookbook 437

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

53 register uint32_t Rtmp;
54

55 CT_CFG.GPCFG0 = 0x0000; // Configure GPI and␣
→˓GPO as Mode 0 (Direct Connect)

56 configIntc(); // Configure INTC
57

58 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
59 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
60

61 #pragma UNROLL(MAXCH)
62 for(ch=0; ch<MAXCH; ch++) {
63 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to DRAM0 so␣

→˓the ARM can change it
64 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; // Interleave the on␣

→˓and off values
65 onCount[ch] = on [ch+PRUNUM*MAXCH];
66 offCount[ch]= off[ch+PRUNUM*MAXCH];
67 }
68 Rtmp = __R30;
69

70 while (1) {
71 __R30 = Rtmp;
72 update(0)
73 update(1)
74 #define PRU0_PRU1_EVT 16
75 __R31 = (PRU0_PRU1_EVT-16) | (0x1<<5); //Tell PRU 1 to start
76 __delay_cycles(1);
77 }
78 }

pwm8.pru0.c PRU 0 using INTC to send a signal to PRU 1

PRU 2’s code waits for PRU 0 before going.

Listing 4.92: pwm8.pru1.c PRU 1 waiting for INTC from PRU 0
1 // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
2 // All channels start at the same time.
3 // It's period is 430ns
4 #include <stdint.h>
5 #include <pru_cfg.h>
6 #include <pru_intc.h>
7 #include <pru_ctrl.h>
8 #include "resource_table_empty.h"
9

10 #define PRUNUM 1
11

12 #define PRU0_DRAM 0x00000 // Offset to DRAM
13 // Skip the first 0x200 byte of DRAM since the Makefile allocates
14 // 0x100 for the STACK and 0x100 for the HEAP.
15 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
16

17 #define MAXCH 2 // Maximum number of channels per PRU
18

19 #define update(ch) \
20 if(onCount[ch]) { \
21 onCount[ch]--; \

(continues on next page)

438 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

22 Rtmp |= 0x1<<ch; \
23 } else if(offCount[ch]) { \
24 offCount[ch]--; \
25 Rtmp &= ~(0x1<<ch); \
26 } else { \
27 onCount[ch] = pru0_dram[2*ch]; \
28 offCount[ch]= pru0_dram[2*ch+1]; \
29 }
30

31 volatile register uint32_t __R30;
32 volatile register uint32_t __R31;
33

34 // Initialize interupts so the PRUs can be syncronized.
35 // PRU1 is started first and then waits for PRU0
36 // PRU0 is then started and tells PRU1 when to start going
37

38 void main(void)
39 {
40 uint32_t ch;
41 uint32_t on[] = {1, 2, 3, 4};
42 uint32_t off[] = {4, 3, 2, 1};
43 uint32_t onCount[MAXCH], offCount[MAXCH];
44 register uint32_t Rtmp;
45

46 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
47 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
48

49 #pragma UNROLL(MAXCH)
50 for(ch=0; ch<MAXCH; ch++) {
51 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to DRAM0 so␣

→˓the ARM can change it
52 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; // Interleave the on␣

→˓and off values
53 onCount[ch] = on [ch+PRUNUM*MAXCH];
54 offCount[ch]= off[ch+PRUNUM*MAXCH];
55 }
56 Rtmp = __R30;
57

58 while (1) {
59 while((__R31 & (0x1<<31))==0) { // Wait for PRU 0
60 }
61 CT_INTC.SICR = 16; // Clear␣

→˓event 16
62 __R30 = Rtmp;
63 update(0)
64 update(1)
65 }
66 }

pwm8.pru1.c PRU 1 waiting for INTC from PRU 0

In pwm8.pru0.c PRU 1 waits for a signal from PRU 0, so be sure to start PRU 1 first.

bone$ *make TARGET=pwm8.pru0; make TARGET=pwm8.pru1*

4.2. PRU Cookbook 439

BeagleBoard Docs, Release 0.0.9

Discussion The figure below shows the two PRUs are synchronized, though there is some extra over-
head in the process so the period is longer.

Fig. 4.159: pwm8.pru0 PRUs sycned

This isn’t much different from the previous examples.

Table 4.20: pwm8.pru0.c changes from pwm7.pru0.c
PRU Line Change
0 37-

45
For PRU 0 these define configInitc() which initializes the interupts. See page 226 of
the AM335x TRM for a diagram explaining events, channels, hosts, etc.

0 55-
56

Set a configuration register and call configInitc.

1 59-
61

PRU 1 then waits for PRU 0 to signal it. Bit 31 of __R31 corresponds to the Host-1 channel
which configInitc() set up. We also clear event 16 so PRU 0 can set it again.

0 74-
75

On PRU 0 this generates the interupt to send to PRU 1. I found PRU 1 was slow to
respond to the interupt, so I put this code at the end of the loop to give time for the
signal to get to PRU 1.

This ends the multipart pwm example.

Reading an Input at Regular Intervals

Problem You have an input pin that needs to be read at regular intervals.

440 Chapter 4. Books

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 0.0.9

Solution You can use the __R31 register to read an input pin. Let’s use the following pins.

Table 4.21: Input/Output pins
Direction Bit number Black AI (ICSS2) Pocket
out 0 P9_31 P8_44 P1.36
in 7 P9_25 P8_36 P1.29

These values came from Mapping bit positions to pin names.

Configure the pins with input_setup.sh.

Listing 4.93: input_setup.sh
1 #!/bin/bash
2 #
3 export TARGET=input.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = "Black"]; then

10 echo " Found"
11 config-pin P9_31 pruout
12 config-pin -q P9_31
13 config-pin P9_25 pruin
14 config-pin -q P9_25
15 elif [$machine = "Blue"]; then
16 echo " Found"
17 pins=""
18 elif [$machine = "PocketBeagle"]; then
19 echo " Found"
20 config-pin P1_36 pruout
21 config-pin -q P1_36
22 config-pin P1_29 pruin
23 config-pin -q P1_29
24 else
25 echo " Not Found"
26 pins=""
27 fi

input_setup.sh

The following code reads the input pin and writes its value to the output pin.

Listing 4.94: code/input.pru0.c
1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include "resource_table_empty.h"
4

5 volatile register uint32_t __R30;
6 volatile register uint32_t __R31;
7

8 void main(void)
9 {

10 uint32_t led;
11 uint32_t sw;
12

(continues on next page)

4.2. PRU Cookbook 441

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 led = 0x1<<0; // P9_31 or P1_36
17 sw = 0x1<<7; // P9_25 or P1_29
18

19 while (1) {
20 if((__R31&sw) == sw) {
21 __R30 |= led; // Turn on LED
22 } else
23 __R30 &= ~led; // Turn off LED
24 }
25 }
26

input.pru0.c

Discussion Just remember that __R30 is for outputs and __R31 is for inputs.

Analog Wave Generator

Problem I want to generate an analog output, but only have GPIO pins.

Solution The Beagle doesn’t have a built-in analog to digital converter. You could get a USB Audio
Dongle which are under $10. But here we’ll take another approach.

Earlier we generated a PWM signal. Here we’ll generate a PWM whose duty cycle changes with time. A
small duty cycle for when the output signal is small and a large duty cycle for when it is large.

This example was inspired by A PRU Sin Wave Generator in chapter 13 of Exploring BeagleBone by Derek
Molloy.

Here’s the code.

Listing 4.95: sine.pru0.c
1 // Generate an analog waveform and use a filter to reconstruct it.
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include <math.h>
6

7 #define MAXT 100 // Maximum number of time samples
8 #define SAWTOOTH // Pick which waveform
9

10 volatile register uint32_t __R30;
11 volatile register uint32_t __R31;
12

13 void main(void)
14 {
15 uint32_t onCount; // Current count for 1 out
16 uint32_t offCount; // count for 0 out
17 uint32_t i;
18 uint32_t waveform[MAXT]; // Waveform to be produced
19

20 // Generate a periodic wave in an array of MAXT values
(continues on next page)

442 Chapter 4. Books

https://www.amazon.com/external-Adapter-Windows-Microphone-SD-CM-UAUD/dp/B001MSS6CS/0&keywords=audio+dongle
https://www.amazon.com/external-Adapter-Windows-Microphone-SD-CM-UAUD/dp/B001MSS6CS/0&keywords=audio+dongle
https://github.com/derekmolloy/exploringBB/tree/master/chp13/sineWave
http://exploringbeaglebone.com/
http://exploringbeaglebone.com/

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

21 #ifdef SAWTOOTH
22 for(i=0; i<MAXT; i++) {
23 waveform[i] = i*100/MAXT;
24 }
25 #endif
26 #ifdef TRIANGLE
27 for(i=0; i<MAXT/2; i++) {
28 waveform[i] = 2*i*100/MAXT;
29 waveform[MAXT-i-1] = 2*i*100/MAXT;
30 }
31 #endif
32 #ifdef SINE
33 float gain = 50.0f;
34 float bias = 50.0f;
35 float freq = 2.0f * 3.14159f / MAXT;
36 for (i=0; i<MAXT; i++){
37 waveform[i] = (uint32_t)(bias+gain*sin(i*freq));
38 }
39 #endif
40

41 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
42 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
43

44 while (1) {
45 // Generate a PWM signal whose duty cycle matches
46 // the amplitude of the signal.
47 for(i=0; i<MAXT; i++) {
48 onCount = waveform[i];
49 offCount = 100 - onCount;
50 while(onCount--) {
51 __R30 |= 0x1; // Set the GPIO pin to 1
52 }
53 while(offCount--) {
54 __R30 &= ~(0x1); // Clear the GPIO pin
55 }
56 }
57 }
58 }

sine.pru0.c

Set the #define at line 7 to the number of samples in one cycle of the waveform and set the #define at
line 8 to which waveform and then run make.

Discussion The code has two parts. The first part (lines 21 to 39) generate the waveform to
be output. The #define``s let you select which waveform you want to generate. Since the
output is a percent duty cycle, the values in ``waveform[] must be between 0 and 100 in-
clusive. The waveform is only generated once, so this part of the code isn’t time critical.

The second part (lines 44 to 54) uses the generated data to set the duty cycle of the PWM on a cycle-by-
cycle basis. This part is time critical; the faster we can output the values, the higher the frequency of the
output signal.

Suppose you want to generate a sawtooth waveform like the one shown in Continuous Sawtooth Wave-
form.

You need to sample the waveform and store one cycle. Sampled Sawtooth Waveform shows a sampled
version of the sawtooth. You need to generate MAXT samples; here we show 20 samples, which may be

4.2. PRU Cookbook 443

BeagleBoard Docs, Release 0.0.9

Fig. 4.160: Continuous Sawtooth Waveform

enough. In the code MAXT is set to 100.

Fig. 4.161: Sampled Sawtooth Waveform

There’s a lot going on here; let’s take it line by line.

444 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Table 4.22: Line-by-line of sine.pru0.c
Line Explanation
2-5 Standard c-header includes
7 Number for samples in one cycle of the analog waveform
8 Which waveform to use. We’ve defined SAWTOOTH, TRIANGLE and SINE, but you can define

your own too.
10-
11

Declaring registers pass:[__R30] and pass:[__R31].

15-
16

onCount counts how many cycles the PWM should be 1 and offCount counts how many it
should be off.

18 waveform[] stores the analog waveform being ouput.
21-
24

SAWTOOTH is the simplest of the waveforms. Each sample is the duty cycle at that time and must
therefore be between 0 and 100.

26-
31

TRIANGLE is also a simple waveform.

32-
39

SINE generates a sine wave and also introduces floating point. Yes, you can use floating point,
but the PRUs don’t have floating point hardware, rather, it’s all done in software. This mean
using floating point will make your code much bigger and slower. Slower doesn’t matter in this
part, and bigger isn’t bigger than our instruction memory, so we’re OK.

47 Here the for loop looks up each value of the generated waveform.
48,49 onCount is the number of cycles to be at 1 and offCount is the number of cycles to be 0. The

two add to 100, one full cycle.
50-
52

Stay on for onCount cycles.

53-
55

Now turn off for offCount cycles, then loop back and look up the next cycle count.

Unfiltered Sawtooth Waveform shows the output of the code.

It doesn’t look like a sawtooth; but if you look at the left side you will see each cycle has a longer and
longer on time. The duty cycle is increasing. Once it’s almost 100% duty cycle, it switches to a very small
duty cycle. Therefore it’s output what we programmed, but what we want is the average of the signal.
The left hand side has a large (and increasing) average which would be for top of the sawtooth. The
right hand side has a small average, which is what you want for the start of the sawtooth.

A simple low-pass filter, built with one resistor and one capacitor will do it. Low-Pass Filter Wiring
Diagram shows how to wire it up.

Note: I used a 10K variable resistor and a 0.022uF capacitor. Probe the circuit between the resistor and
the capacitor and adjust the resistor until you get a good looking waveform.

Reconstructed Sawtooth Waveform shows the results for filtered the SAWTOOTH.

Now that looks more like a sawtooth wave. The top plot is the time-domain plot of the output of the
low-pass filter. The bottom plot is the FFT of the top plot, therefore it’s the frequency domain. We are
getting a sawtooth with a frequency of about 6.1KHz. You can see the fundamental frequency on the
bottom plot along with several harmonics.

The top looks like a sawtooth wave, but there is a high freqnecy superimposed on it. We are only using a
simple first-order filter. You could lower the cutoff freqnecy by adjusting the resistor. You’ll see something
like Reconstructed Sawtooth Waveform with Lower Cutoff Frequency.

The high freqencies have been reduced, but the corner of the waveform has been rounded. You can
also adjust the cutoff to a higher frequency and you’ll get a sharper corner, but you’ll also get more high
frequencies. See Reconstructed Sawtooth Waveform with Higher Cutoff Frequency

Adjust to taste, though the real solution is to build a higher order filter. Search for _second order filter
and you’ll find some nice circuits.

4.2. PRU Cookbook 445

BeagleBoard Docs, Release 0.0.9

Fig. 4.162: Unfiltered Sawtooth Waveform

Fig. 4.163: Low-Pass Filter Wiring Diagram

446 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.164: Reconstructed Sawtooth Waveform

4.2. PRU Cookbook 447

BeagleBoard Docs, Release 0.0.9

Fig. 4.165: Reconstructed Sawtooth Waveform with Lower Cutoff Frequency

448 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.166: Reconstructed Sawtooth Waveform with Higher Cutoff Frequency

4.2. PRU Cookbook 449

BeagleBoard Docs, Release 0.0.9

You can adjust the frequency of the signal by adjusting MAXT. A smaller MAXT will give a higher frequency.
I’ve gotten good results with MAXT as small as 20.

You can also get a triangle waveform by setting the #define. Reconstructed Triangle Waveform shows the
output signal.

Fig. 4.167: Reconstructed Triangle Waveform

And also the sine wave as shown in Reconstructed Sinusoid Waveform.

Notice on the bottom plot the harmonics are much more suppressed.

Generating the sine waveform uses floats. This requires much more code. You can look in /tmp/cloud9-
examples/sine.pru0.map to see how much memory is being used. /tmp/cloud9-examples/sine.pru0.map
for Sine Wave shows the first few lines for the sine wave.

Listing 4.96: /tmp/cloud9-examples/sine.pru0.map for Sine Wave
1 **
2 PRU Linker Unix v2.1.5
3 **
4 >> Linked Fri Jun 29 13:58:08 2018
5

6 OUTPUT FILE NAME: </tmp/pru0-gen/sine1.out>
7 ENTRY POINT SYMBOL: "_c_int00_noinit_noargs_noexit" address: 00000000
8

9

10 MEMORY CONFIGURATION
(continues on next page)

450 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.168: Reconstructed Sinusoid Waveform

4.2. PRU Cookbook 451

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

11

12 name origin length used unused attr fill
13 ---------------------- -------- --------- -------- -------- ---- --------
14 PAGE 0:
15 PRU_IMEM 00000000 00002000 000018c0 00000740 RWIX
16

17 PAGE 1:
18 PRU_DMEM_0_1 00000000 00002000 00000154 00001eac RWIX
19 PRU_DMEM_1_0 00002000 00002000 00000000 00002000 RWIX
20

21 PAGE 2:
22 PRU_SHAREDMEM 00010000 00003000 00000000 00003000 RWIX
23 PRU_INTC 00020000 00001504 00000000 00001504 RWIX
24 PRU_CFG 00026000 00000044 00000044 00000000 RWIX
25 PRU_UART 00028000 00000038 00000000 00000038 RWIX
26 PRU_IEP 0002e000 0000031c 00000000 0000031c RWIX
27 PRU_ECAP 00030000 00000060 00000000 00000060 RWIX
28 RSVD27 00032000 00000100 00000000 00000100 RWIX
29 RSVD21 00032400 00000100 00000000 00000100 RWIX
30 L3OCMC 40000000 00010000 00000000 00010000 RWIX
31 MCASP0_DMA 46000000 00000100 00000000 00000100 RWIX
32 UART1 48022000 00000088 00000000 00000088 RWIX
33 UART2 48024000 00000088 00000000 00000088 RWIX
34 I2C1 4802a000 000000d8 00000000 000000d8 RWIX
35 MCSPI0 48030000 000001a4 00000000 000001a4 RWIX
36 DMTIMER2 48040000 0000005c 00000000 0000005c RWIX
37 MMCHS0 48060000 00000300 00000000 00000300 RWIX
38 MBX0 480c8000 00000140 00000000 00000140 RWIX
39 SPINLOCK 480ca000 00000880 00000000 00000880 RWIX
40 I2C2 4819c000 000000d8 00000000 000000d8 RWIX
41 MCSPI1 481a0000 000001a4 00000000 000001a4 RWIX
42 DCAN0 481cc000 000001e8 00000000 000001e8 RWIX
43 DCAN1 481d0000 000001e8 00000000 000001e8 RWIX
44 PWMSS0 48300000 000002c4 00000000 000002c4 RWIX
45 PWMSS1 48302000 000002c4 00000000 000002c4 RWIX
46 PWMSS2 48304000 000002c4 00000000 000002c4 RWIX
47 RSVD13 48310000 00000100 00000000 00000100 RWIX
48 RSVD10 48318000 00000100 00000000 00000100 RWIX
49 TPCC 49000000 00001098 00000000 00001098 RWIX
50 GEMAC 4a100000 0000128c 00000000 0000128c RWIX
51 DDR 80000000 00000100 00000000 00000100 RWIX
52

53

54 SECTION ALLOCATION MAP
55

56 output attributes/
57 section page origin length input sections
58 -------- ---- ---------- ---------- ----------------
59 .text:_c_int00*
60 * 0 00000000 00000014
61 00000000 00000014 rtspruv3_le.lib : boot_special.obj (.text:_

→˓c_int00_noinit_noargs_noexit)
62

63 .text 0 00000014 000018ac
64 00000014 00000374 rtspruv3_le.lib : sin.obj (.text:sin)
65 00000388 00000314 : frcmpyd.obj (.text:__TI_

→˓frcmpyd) (continues on next page)

452 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

66 0000069c 00000258 : frcaddd.obj (.text:__TI_
→˓frcaddd)

67 000008f4 00000254 : mpyd.obj (.text:__pruabi_
→˓mpyd)

68 00000b48 00000248 : addd.obj (.text:__pruabi_
→˓addd)

69 00000d90 000001c8 : mpyf.obj (.text:__pruabi_
→˓mpyf)

70 00000f58 00000100 : modf.obj (.text:modf)
71 00001058 000000b4 : gtd.obj (.text:__pruabi_

→˓gtd)
72 0000110c 000000b0 : ged.obj (.text:__pruabi_

→˓ged)
73 000011bc 000000b0 : ltd.obj (.text:__pruabi_

→˓ltd)
74 0000126c 000000b0 sine1.obj (.text:main)
75 0000131c 000000a8 rtspruv3_le.lib : frcmpyf.obj (.text:__TI_

→˓frcmpyf)
76 000013c4 000000a0 : fixdu.obj (.text:__

→˓pruabi_fixdu)
77 00001464 0000009c : round.obj (.text:__

→˓pruabi_nround)
78 00001500 00000090 : eqld.obj (.text:__pruabi_

→˓eqd)
79 00001590 0000008c : renormd.obj (.text:__TI_

→˓renormd)
80 0000161c 0000008c : fixdi.obj (.text:__

→˓pruabi_fixdi)
81 000016a8 00000084 : fltid.obj (.text:__

→˓pruabi_fltid)
82 0000172c 00000078 : cvtfd.obj (.text:__

→˓pruabi_cvtfd)
83 000017a4 00000050 : fltuf.obj (.text:__

→˓pruabi_fltuf)
84 000017f4 0000002c : asri.obj (.text:__pruabi_

→˓asri)
85 00001820 0000002c : subd.obj (.text:__pruabi_

→˓subd)
86 0000184c 00000024 : mpyi.obj (.text:__pruabi_

→˓mpyi)
87 00001870 00000020 : negd.obj (.text:__pruabi_

→˓negd)
88 00001890 00000020 : trunc.obj (.text:__

→˓pruabi_trunc)
89 000018b0 00000008 : exit.obj (.text:abort)
90 000018b8 00000008 : exit.obj (.text:loader_

→˓exit)
91

92 .stack 1 00000000 00000100 UNINITIALIZED
93 00000000 00000004 rtspruv3_le.lib : boot.obj (.stack)
94 00000004 000000fc --HOLE--
95

96 .cinit 1 00000000 00000000 UNINITIALIZED
97

98 .fardata 1 00000100 00000040
99 00000100 00000040 rtspruv3_le.lib : sin.obj (.fardata:R$1)

(continues on next page)

4.2. PRU Cookbook 453

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

100

101 .resource_table
102 * 1 00000140 00000014
103 00000140 00000014 sine1.obj (.resource_table:retain)
104

105 .creg.PRU_CFG.noload.near
106 * 2 00026000 00000044 NOLOAD SECTION
107 00026000 00000044 sine1.obj (.creg.PRU_CFG.noload.near)
108

109 .creg.PRU_CFG.near
110 * 2 00026044 00000000 UNINITIALIZED
111

112 .creg.PRU_CFG.noload.far
113 * 2 00026044 00000000 NOLOAD SECTION
114

115 .creg.PRU_CFG.far
116 * 2 00026044 00000000 UNINITIALIZED
117

118

119 SEGMENT ATTRIBUTES
120

121 id tag seg value
122 -- --- --- -----
123 0 PHA_PAGE 1 1
124 1 PHA_PAGE 2 1
125

126

127 GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name
128

129 page address name
130 ---- ------- ----
131 0 000018b8 C$$EXIT
132 2 00026000 CT_CFG
133 abs 481cc000 __PRU_CREG_BASE_DCAN0
134 abs 481d0000 __PRU_CREG_BASE_DCAN1
135 abs 80000000 __PRU_CREG_BASE_DDR
136 abs 48040000 __PRU_CREG_BASE_DMTIMER2
137 abs 4a100000 __PRU_CREG_BASE_GEMAC
138 abs 4802a000 __PRU_CREG_BASE_I2C1
139 abs 4819c000 __PRU_CREG_BASE_I2C2
140 abs 40000000 __PRU_CREG_BASE_L3OCMC
141 abs 480c8000 __PRU_CREG_BASE_MBX0
142 abs 46000000 __PRU_CREG_BASE_MCASP0_DMA
143 abs 48030000 __PRU_CREG_BASE_MCSPI0
144 abs 481a0000 __PRU_CREG_BASE_MCSPI1
145 abs 48060000 __PRU_CREG_BASE_MMCHS0
146 abs 00026000 __PRU_CREG_BASE_PRU_CFG
147 abs 00000000 __PRU_CREG_BASE_PRU_DMEM_0_1
148 abs 00002000 __PRU_CREG_BASE_PRU_DMEM_1_0
149 abs 00030000 __PRU_CREG_BASE_PRU_ECAP
150 abs 0002e000 __PRU_CREG_BASE_PRU_IEP
151 abs 00020000 __PRU_CREG_BASE_PRU_INTC
152 abs 00010000 __PRU_CREG_BASE_PRU_SHAREDMEM
153 abs 00028000 __PRU_CREG_BASE_PRU_UART
154 abs 48300000 __PRU_CREG_BASE_PWMSS0
155 abs 48302000 __PRU_CREG_BASE_PWMSS1

(continues on next page)

454 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

156 abs 48304000 __PRU_CREG_BASE_PWMSS2
157 abs 48318000 __PRU_CREG_BASE_RSVD10
158 abs 48310000 __PRU_CREG_BASE_RSVD13
159 abs 00032400 __PRU_CREG_BASE_RSVD21
160 abs 00032000 __PRU_CREG_BASE_RSVD27
161 abs 480ca000 __PRU_CREG_BASE_SPINLOCK
162 abs 49000000 __PRU_CREG_BASE_TPCC
163 abs 48022000 __PRU_CREG_BASE_UART1
164 abs 48024000 __PRU_CREG_BASE_UART2
165 abs 0000000e __PRU_CREG_DCAN0
166 abs 0000000f __PRU_CREG_DCAN1
167 abs 0000001f __PRU_CREG_DDR
168 abs 00000001 __PRU_CREG_DMTIMER2
169 abs 00000009 __PRU_CREG_GEMAC
170 abs 00000002 __PRU_CREG_I2C1
171 abs 00000011 __PRU_CREG_I2C2
172 abs 0000001e __PRU_CREG_L3OCMC
173 abs 00000016 __PRU_CREG_MBX0
174 abs 00000008 __PRU_CREG_MCASP0_DMA
175 abs 00000006 __PRU_CREG_MCSPI0
176 abs 00000010 __PRU_CREG_MCSPI1
177 abs 00000005 __PRU_CREG_MMCHS0
178 abs 00000004 __PRU_CREG_PRU_CFG
179 abs 00000018 __PRU_CREG_PRU_DMEM_0_1
180 abs 00000019 __PRU_CREG_PRU_DMEM_1_0
181 abs 00000003 __PRU_CREG_PRU_ECAP
182 abs 0000001a __PRU_CREG_PRU_IEP
183 abs 00000000 __PRU_CREG_PRU_INTC
184 abs 0000001c __PRU_CREG_PRU_SHAREDMEM
185 abs 00000007 __PRU_CREG_PRU_UART
186 abs 00000012 __PRU_CREG_PWMSS0
187 abs 00000013 __PRU_CREG_PWMSS1
188 abs 00000014 __PRU_CREG_PWMSS2
189 abs 0000000a __PRU_CREG_RSVD10
190 abs 0000000d __PRU_CREG_RSVD13
191 abs 00000015 __PRU_CREG_RSVD21
192 abs 0000001b __PRU_CREG_RSVD27
193 abs 00000017 __PRU_CREG_SPINLOCK
194 abs 0000001d __PRU_CREG_TPCC
195 abs 0000000b __PRU_CREG_UART1
196 abs 0000000c __PRU_CREG_UART2
197 1 00000100 __TI_STACK_END
198 abs 00000100 __TI_STACK_SIZE
199 0 0000069c __TI_frcaddd
200 0 00000388 __TI_frcmpyd
201 0 0000131c __TI_frcmpyf
202 0 00001590 __TI_renormd
203 abs ffffffff __binit__
204 abs ffffffff __c_args__
205 0 00000b48 __pruabi_addd
206 0 000017f4 __pruabi_asri
207 0 0000172c __pruabi_cvtfd
208 0 00001500 __pruabi_eqd
209 0 0000161c __pruabi_fixdi
210 0 000013c4 __pruabi_fixdu
211 0 000016a8 __pruabi_fltid

(continues on next page)

4.2. PRU Cookbook 455

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

212 0 000017a4 __pruabi_fltuf
213 0 0000110c __pruabi_ged
214 0 00001058 __pruabi_gtd
215 0 000011bc __pruabi_ltd
216 0 000008f4 __pruabi_mpyd
217 0 00000d90 __pruabi_mpyf
218 0 0000184c __pruabi_mpyi
219 0 00001870 __pruabi_negd
220 0 00001464 __pruabi_nround
221 0 00001820 __pruabi_subd
222 0 00001890 __pruabi_trunc
223 0 00000000 _c_int00_noinit_noargs_noexit
224 1 00000000 _stack
225 0 000018b0 abort
226 abs ffffffff binit
227 0 0000126c main
228 0 00000f58 modf
229 1 00000140 pru_remoteproc_ResourceTable
230 0 00000014 sin
231

232

233 GLOBAL SYMBOLS: SORTED BY Symbol Address
234

235 page address name
236 ---- ------- ----
237 0 00000000 _c_int00_noinit_noargs_noexit
238 0 00000014 sin
239 0 00000388 __TI_frcmpyd
240 0 0000069c __TI_frcaddd
241 0 000008f4 __pruabi_mpyd
242 0 00000b48 __pruabi_addd
243 0 00000d90 __pruabi_mpyf
244 0 00000f58 modf
245 0 00001058 __pruabi_gtd
246 0 0000110c __pruabi_ged
247 0 000011bc __pruabi_ltd
248 0 0000126c main
249 0 0000131c __TI_frcmpyf
250 0 000013c4 __pruabi_fixdu
251 0 00001464 __pruabi_nround
252 0 00001500 __pruabi_eqd
253 0 00001590 __TI_renormd
254 0 0000161c __pruabi_fixdi
255 0 000016a8 __pruabi_fltid
256 0 0000172c __pruabi_cvtfd
257 0 000017a4 __pruabi_fltuf
258 0 000017f4 __pruabi_asri
259 0 00001820 __pruabi_subd
260 0 0000184c __pruabi_mpyi
261 0 00001870 __pruabi_negd
262 0 00001890 __pruabi_trunc
263 0 000018b0 abort
264 0 000018b8 C$$EXIT
265 1 00000000 _stack
266 1 00000100 __TI_STACK_END
267 1 00000140 pru_remoteproc_ResourceTable

(continues on next page)

456 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

268 2 00026000 CT_CFG
269 abs 00000000 __PRU_CREG_BASE_PRU_DMEM_0_1
270 abs 00000000 __PRU_CREG_PRU_INTC
271 abs 00000001 __PRU_CREG_DMTIMER2
272 abs 00000002 __PRU_CREG_I2C1
273 abs 00000003 __PRU_CREG_PRU_ECAP
274 abs 00000004 __PRU_CREG_PRU_CFG
275 abs 00000005 __PRU_CREG_MMCHS0
276 abs 00000006 __PRU_CREG_MCSPI0
277 abs 00000007 __PRU_CREG_PRU_UART
278 abs 00000008 __PRU_CREG_MCASP0_DMA
279 abs 00000009 __PRU_CREG_GEMAC
280 abs 0000000a __PRU_CREG_RSVD10
281 abs 0000000b __PRU_CREG_UART1
282 abs 0000000c __PRU_CREG_UART2
283 abs 0000000d __PRU_CREG_RSVD13
284 abs 0000000e __PRU_CREG_DCAN0
285 abs 0000000f __PRU_CREG_DCAN1
286 abs 00000010 __PRU_CREG_MCSPI1
287 abs 00000011 __PRU_CREG_I2C2
288 abs 00000012 __PRU_CREG_PWMSS0
289 abs 00000013 __PRU_CREG_PWMSS1
290 abs 00000014 __PRU_CREG_PWMSS2
291 abs 00000015 __PRU_CREG_RSVD21
292 abs 00000016 __PRU_CREG_MBX0
293 abs 00000017 __PRU_CREG_SPINLOCK
294 abs 00000018 __PRU_CREG_PRU_DMEM_0_1
295 abs 00000019 __PRU_CREG_PRU_DMEM_1_0
296 abs 0000001a __PRU_CREG_PRU_IEP
297 abs 0000001b __PRU_CREG_RSVD27
298 abs 0000001c __PRU_CREG_PRU_SHAREDMEM
299 abs 0000001d __PRU_CREG_TPCC
300 abs 0000001e __PRU_CREG_L3OCMC
301 abs 0000001f __PRU_CREG_DDR
302 abs 00000100 __TI_STACK_SIZE
303 abs 00002000 __PRU_CREG_BASE_PRU_DMEM_1_0
304 abs 00010000 __PRU_CREG_BASE_PRU_SHAREDMEM
305 abs 00020000 __PRU_CREG_BASE_PRU_INTC
306 abs 00026000 __PRU_CREG_BASE_PRU_CFG
307 abs 00028000 __PRU_CREG_BASE_PRU_UART
308 abs 0002e000 __PRU_CREG_BASE_PRU_IEP
309 abs 00030000 __PRU_CREG_BASE_PRU_ECAP
310 abs 00032000 __PRU_CREG_BASE_RSVD27
311 abs 00032400 __PRU_CREG_BASE_RSVD21
312 abs 40000000 __PRU_CREG_BASE_L3OCMC
313 abs 46000000 __PRU_CREG_BASE_MCASP0_DMA
314 abs 48022000 __PRU_CREG_BASE_UART1
315 abs 48024000 __PRU_CREG_BASE_UART2
316 abs 4802a000 __PRU_CREG_BASE_I2C1
317 abs 48030000 __PRU_CREG_BASE_MCSPI0
318 abs 48040000 __PRU_CREG_BASE_DMTIMER2
319 abs 48060000 __PRU_CREG_BASE_MMCHS0
320 abs 480c8000 __PRU_CREG_BASE_MBX0
321 abs 480ca000 __PRU_CREG_BASE_SPINLOCK
322 abs 4819c000 __PRU_CREG_BASE_I2C2
323 abs 481a0000 __PRU_CREG_BASE_MCSPI1

(continues on next page)

4.2. PRU Cookbook 457

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

324 abs 481cc000 __PRU_CREG_BASE_DCAN0
325 abs 481d0000 __PRU_CREG_BASE_DCAN1
326 abs 48300000 __PRU_CREG_BASE_PWMSS0
327 abs 48302000 __PRU_CREG_BASE_PWMSS1
328 abs 48304000 __PRU_CREG_BASE_PWMSS2
329 abs 48310000 __PRU_CREG_BASE_RSVD13
330 abs 48318000 __PRU_CREG_BASE_RSVD10
331 abs 49000000 __PRU_CREG_BASE_TPCC
332 abs 4a100000 __PRU_CREG_BASE_GEMAC
333 abs 80000000 __PRU_CREG_BASE_DDR
334 abs ffffffff __binit__
335 abs ffffffff __c_args__
336 abs ffffffff binit
337

338 [100 symbols]

lines=1..22

Notice line 15 shows 0x18c0 bytes are being used for instructions. That’s 6336 in decimal.

Now compile for the sawtooth and you see only 444 byes are used. Floating-point requires over 5K more
bytes. Use with care. If you are short on instruction space, you can move the table generation to the
ARM and just copy the table to the PRU.

WS2812 (NeoPixel) driver

Problem You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light
it up.

Solution NeoPixel is Adafruit’s name for the WS2812 Intelligent control LED. Each NeoPixel contains
a Red, Green and Blue LED with a PWM controller that can dim each one individually making a rainbow
of colors possible. The NeoPixel is driven by a single serial line. The timing on the line is very sensesitive,
which make the PRU a perfect candidate for driving it.

Wire the input to P9_29 and power to 3.3V and ground to ground as shown in NeoPixel Wiring.

Test your wiring with the simple code in neo1.pru0.c - Code to turn all NeoPixels’s white which to turns all
pixels white.

Listing 4.97: neo1.pru0.c - Code to turn all NeoPixels’s white
1 // Control a ws2812 (NeoPixel) display, All on or all off
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include "prugpio.h"
6

7 #define STR_LEN 24
8 #define oneCyclesOn 700/5 // Stay on 700ns
9 #define oneCyclesOff 800/5

10 #define zeroCyclesOn 350/5
11 #define zeroCyclesOff 600/5
12 #define resetCycles 60000/5 // Must be at least 50u, use 60u
13 #define gpio P9_29 // output pin
14

15 #define ONE
16

(continues on next page)

458 Chapter 4. Books

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487

BeagleBoard Docs, Release 0.0.9

Fig. 4.169: NeoPixel Wiring

(continued from previous page)

17 volatile register uint32_t __R30;
18 volatile register uint32_t __R31;
19

20 void main(void)
21 {
22 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
23 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
24

25 uint32_t i;
26 for(i=0; i<STR_LEN*3*8; i++) {
27 #ifdef ONE
28 __R30 |= gpio; // Set the GPIO pin to 1
29 __delay_cycles(oneCyclesOn-1);
30 __R30 &= ~gpio; // Clear the GPIO pin
31 __delay_cycles(oneCyclesOff-2);
32 #else
33 __R30 |= gpio; // Set the GPIO pin to 1
34 __delay_cycles(zeroCyclesOn-1);
35 __R30 &= ~gpio; // Clear the GPIO pin
36 __delay_cycles(zeroCyclesOff-2);
37 #endif
38 }
39 // Send Reset
40 __R30 &= ~gpio; // Clear the GPIO pin
41 __delay_cycles(resetCycles);
42

43 __halt();
44 }

neo1.pru0.c

4.2. PRU Cookbook 459

BeagleBoard Docs, Release 0.0.9

Discussion NeoPixel bit sequence (taken from WS2812 Data Sheet) shows the following waveforms are
used to send a bit of data.

Fig. 4.170: NeoPixel bit sequence

Table 4.23: Where the times are:
Label Time in ns
T0H 350
T0L 800
T1H 700
T1L 600
Treset >50,000

The code in neo1.pru0.c - Code to turn all NeoPixels’s white define these times in lines 7-10. The /5 is
because each instruction take 5ns. Lines 27-30 then set the output to 1 for the desired time and then to 0
and keeps repeating it for the entire string length. NeoPixel zero timing shows the waveform for sending
a 0 value. Note the times are spot on.

Each NeoPixel listens for a RGB value. Once a value has arrived all other values that follow are passed
on to the next NeoPixel which does the same thing. That way you can individually control all of the
NeoPixels.

Lines 38-40 send out a reset pulse. If a NeoPixel sees a reset pulse it will grab the next value for itself
and start over again.

Setting NeoPixels to Different Colors

Problem I want to set the LEDs to different colors.

Solution Wire your NeoPixels as shown in NeoPixel Wiring then run the code in neo2.pru0.c - Code to
turn on green, red, blue.

Listing 4.98: neo2.pru0.c - Code to turn on green, red, blue
1 // Control a ws2812 (neo pixel) display, green, red, blue, green, ...
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include "prugpio.h"
6

7 #define STR_LEN 3
(continues on next page)

460 Chapter 4. Books

https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

BeagleBoard Docs, Release 0.0.9

Fig. 4.171: NeoPixel zero timing

4.2. PRU Cookbook 461

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

8 #define oneCyclesOn 700/5 // Stay on 700ns
9 #define oneCyclesOff 800/5

10 #define zeroCyclesOn 350/5
11 #define zeroCyclesOff 600/5
12 #define resetCycles 60000/5 // Must be at least 50u, use 60u
13 #define gpio P9_29 // output pin
14

15 volatile register uint32_t __R30;
16 volatile register uint32_t __R31;
17

18 void main(void)
19 {
20 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
21 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
22

23 uint32_t color[STR_LEN] = {0x0f0000, 0x000f00, 0x0000f}; // green, red,
→˓ blue

24 int i, j;
25

26 for(j=0; j<STR_LEN; j++) {
27 for(i=23; i>=0; i--) {
28 if(color[j] & (0x1<<i)) {
29 __R30 |= gpio; // Set the GPIO pin to 1
30 __delay_cycles(oneCyclesOn-1);
31 __R30 &= ~gpio; // Clear the GPIO pin
32 __delay_cycles(oneCyclesOff-2);
33 } else {
34 __R30 |= gpio; // Set the GPIO pin to 1
35 __delay_cycles(zeroCyclesOn-1);
36 __R30 &= ~gpio; // Clear the GPIO pin
37 __delay_cycles(zeroCyclesOff-2);
38 }
39 }
40 }
41 // Send Reset
42 __R30 &= ~gpio; // Clear the GPIO pin
43 __delay_cycles(resetCycles);
44

45 __halt();
46 }

neo2.pru0.c

This will make the first LED green, the second red and the third blue.

Discussion NeoPixel data sequence shows the sequence of bits used to control the green, red and blue
values.

Fig. 4.172: NeoPixel data sequence

Note: The usual order for colors is RGB (red, green, blue), but the NeoPixels use GRB (green, red,
blue).

462 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Line-by-line for neo2.pru0.c is the line-by-line for neo2.pru0.c.

Table 4.24: Line-by-line for neo2.pru0.c
Line
23

Explanation Define the string of colors to be output. Here the ordering of the bits is the same
as NeoPixel data sequence, GRB.

26 Loop for each color to output.
27 Loop for each bit in an GRB color.
28 Get the j^th^ color and mask off all but the i^th^ bit. (0x1:ref:`i) takes the value 0x1 and

shifts it left i bits. When anded (&) with color[j] it will zero out all but the i^th^ bit. If the
result of the operation is 1, the if is done, otherwise the else is done.

29-
32

Send a 1.

34-
37

Send a 0.

42-
43

Send a reset pulse once all the colors have been sent.

Note: This will only change the first STR_LEN LEDs. The LEDs that follow will not be changed.

Controlling Arbitrary LEDs

Problem I want to change the 10^th^ LED and not have to change the others.

Solution You need to keep an array of colors for the whole string in the PRU. Change the color of
any pixels you want in the array and then send out the whole string to the LEDs. neo3.pru0.c - Code to
animate a red pixel running around a ring of blue shows an example animates a red pixel running around
a ring of blue background. Neo3 Video shows the code in action.

Listing 4.99: neo3.pru0.c - Code to animate a red pixel running
around a ring of blue

1 // Control a ws2812 (neo pixel) display, green, red, blue, green, ...
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include "prugpio.h"
6

7 #define STR_LEN 24
8 #define oneCyclesOn 700/5 // Stay on 700ns
9 #define oneCyclesOff 800/5

10 #define zeroCyclesOn 350/5
11 #define zeroCyclesOff 600/5
12 #define resetCycles 60000/5 // Must be at least 50u, use 60u
13 #define gpio P9_29 // output pin
14

15 #define SPEED 20000000/5 // Time to wait between updates
16

17 volatile register uint32_t __R30;
18 volatile register uint32_t __R31;
19

20 void main(void)
21 {
22 uint32_t background = 0x00000f;

(continues on next page)

4.2. PRU Cookbook 463

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

23 uint32_t foreground = 0x000f00;
24

25 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
26 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
27

28 uint32_t color[STR_LEN]; // green, red, blue
29 int i, j;
30 int k, oldk = 0;;
31 // Set everything to background
32 for(i=0; i<STR_LEN; i++) {
33 color[i] = background;
34 }
35

36 while(1) {
37 // Move forward one position
38 for(k=0; k<STR_LEN; k++) {
39 color[oldk] = background;
40 color[k] = foreground;
41 oldk=k;
42

43 // Output the string
44 for(j=0; j<STR_LEN; j++) {
45 for(i=23; i>=0; i--) {
46 if(color[j] & (0x1<<i)) {
47 __R30 |= gpio; // Set␣

→˓the GPIO pin to 1
48 __delay_cycles(oneCyclesOn-1);
49 __R30 &= ~gpio; //␣

→˓Clear the GPIO pin
50 __delay_cycles(oneCyclesOff-2);
51 } else {
52 __R30 |= gpio; // Set␣

→˓the GPIO pin to 1
53 __delay_cycles(zeroCyclesOn-1);
54 __R30 &= ~gpio; //␣

→˓Clear the GPIO pin
55 __delay_cycles(zeroCyclesOff-2);
56 }
57 }
58 }
59 // Send Reset
60 __R30 &= ~gpio; // Clear the GPIO pin
61 __delay_cycles(resetCycles);
62

63 // Wait
64 __delay_cycles(SPEED);
65 }
66 }
67 }

neo3.pru0.c

Neo3 Video neo3.pru0.c - Simple animation

464 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Discussion

Table 4.25: Here’s the highlights.
Line Explanation
32,33 Initiallize the array of colors.
38-41 Update the array.
44-58 Send the array to the LEDs.
60-61 Send a reset.
64 Wait a bit.

Controlling NeoPixels Through a Kernel Driver

Problem You want to control your NeoPixels through a kernel driver so you can control it through a
/dev interface.

Solution The rpmsg_pru driver provides a way to pass data between the ARM processor and the PRUs.
It’s already included on current images. neo4.pru0.c - Code to talk to the PRU via rpmsg_pru shows an
example.

Listing 4.100: neo4.pru0.c - Code to talk to the PRU via rpmsg_pru
1 // Use rpmsg to control the NeoPixels via /dev/rpmsg_pru30
2 #include <stdint.h>
3 #include <stdio.h>
4 #include <stdlib.h> // atoi
5 #include <string.h>
6 #include <pru_cfg.h>
7 #include <pru_intc.h>
8 #include <rsc_types.h>
9 #include <pru_rpmsg.h>

10 #include "resource_table_0.h"
11 #include "prugpio.h"
12

13 volatile register uint32_t __R30;
14 volatile register uint32_t __R31;
15

16 /* Host-0 Interrupt sets bit 30 in register R31 */
17 #define HOST_INT ((uint32_t) 1 << 30)
18

19 /* The PRU-ICSS system events used for RPMsg are defined in the Linux device tree
20 * PRU0 uses system event 16 (To ARM) and 17 (From ARM)
21 * PRU1 uses system event 18 (To ARM) and 19 (From ARM)
22 */
23 #define TO_ARM_HOST 16
24 #define FROM_ARM_HOST 17
25

26 /*
27 * Using the name 'rpmsg-pru' will probe the rpmsg_pru driver found
28 * at linux-x.y.z/drivers/rpmsg/rpmsg_pru.c
29 */
30 #define CHAN_NAME "rpmsg-pru"
31 #define CHAN_DESC "Channel 30"
32 #define CHAN_PORT 30
33

34 /*
35 * Used to make sure the Linux drivers are ready for RPMsg communication

(continues on next page)

4.2. PRU Cookbook 465

https://github.com/beagleboard/linux/raw/4.9/drivers/rpmsg/rpmsg_pru.c

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

36 * Found at linux-x.y.z/include/uapi/linux/virtio_config.h
37 */
38 #define VIRTIO_CONFIG_S_DRIVER_OK 4
39

40 char payload[RPMSG_BUF_SIZE];
41

42 #define STR_LEN 24
43 #define oneCyclesOn 700/5 // Stay on for 700ns
44 #define oneCyclesOff 600/5
45 #define zeroCyclesOn 350/5
46 #define zeroCyclesOff 800/5
47 #define resetCycles 51000/5 // Must be at least 50u, use 51u
48 #define out P9_29 // Bit number to output on
49

50 #define SPEED 20000000/5 // Time to wait between updates
51

52 uint32_t color[STR_LEN]; // green, red, blue
53

54 /*
55 * main.c
56 */
57 void main(void)
58 {
59 struct pru_rpmsg_transport transport;
60 uint16_t src, dst, len;
61 volatile uint8_t *status;
62

63 uint8_t r, g, b;
64 int i, j;
65 // Set everything to background
66 for(i=0; i<STR_LEN; i++) {
67 color[i] = 0x010000;
68 }
69

70 /* Allow OCP master port access by the PRU so the PRU can read external␣
→˓memories */

71 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
72

73 /* Clear the status of the PRU-ICSS system event that the ARM will use to
→˓'kick' us */

74 #ifdef CHIP_IS_am57xx
75 CT_INTC.SICR_bit.STATUS_CLR_INDEX = FROM_ARM_HOST;
76 #else
77 CT_INTC.SICR_bit.STS_CLR_IDX = FROM_ARM_HOST;
78 #endif
79

80 /* Make sure the Linux drivers are ready for RPMsg communication */
81 status = &resourceTable.rpmsg_vdev.status;
82 while (!(*status & VIRTIO_CONFIG_S_DRIVER_OK));
83

84 /* Initialize the RPMsg transport structure */
85 pru_rpmsg_init(&transport, &resourceTable.rpmsg_vring0, &resourceTable.rpmsg_

→˓vring1, TO_ARM_HOST, FROM_ARM_HOST);
86

87 /* Create the RPMsg channel between the PRU and ARM user space using the␣
→˓transport structure. */

(continues on next page)

466 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

88 while (pru_rpmsg_channel(RPMSG_NS_CREATE, &transport, CHAN_NAME, CHAN_DESC,␣
→˓CHAN_PORT) != PRU_RPMSG_SUCCESS);

89 while (1) {
90 /* Check bit 30 of register R31 to see if the ARM has kicked us */
91 if (__R31 & HOST_INT) {
92 /* Clear the event status */
93 #ifdef CHIP_IS_am57xx
94 CT_INTC.SICR_bit.STATUS_CLR_INDEX = FROM_ARM_HOST;
95 #else
96 CT_INTC.SICR_bit.STS_CLR_IDX = FROM_ARM_HOST;
97 #endif
98 /* Receive all available messages, multiple messages can be␣

→˓sent per kick */
99 while (pru_rpmsg_receive(&transport, &src, &dst, payload, &

→˓len) == PRU_RPMSG_SUCCESS) {
100 char *ret; // rest of payload after front␣

→˓character is removed
101 int index; // index of LED to control
102 // Input format is: index red green blue
103 index = atoi(payload);
104 // Update the array, but don't write it out.
105 if((index >=0) & (index < STR_LEN)) {
106 ret = strchr(payload, ' '); // Skip over␣

→˓index
107 r = strtol(&ret[1], NULL, 0);
108 ret = strchr(&ret[1], ' '); // Skip over r,

→˓ etc.
109 g = strtol(&ret[1], NULL, 0);
110 ret = strchr(&ret[1], ' ');
111 b = strtol(&ret[1], NULL, 0);
112

113 color[index] = (g<<16)|(r<<8)|b; // String␣
→˓wants GRB

114 }
115 // When index is -1, send the array to the LED string
116 if(index == -1) {
117 // Output the string
118 for(j=0; j<STR_LEN; j++) {
119 // Cycle through each bit
120 for(i=23; i>=0; i--) {
121 if(color[j] & (0x1<<i)) {
122 __R30 |= out;

→˓ // Set the GPIO pin to 1
123 __delay_

→˓cycles(oneCyclesOn-1);
124 __R30 &= ~out;

→˓ // Clear the GPIO pin
125 __delay_

→˓cycles(oneCyclesOff-14);
126 } else {
127 __R30 |= out;

→˓ // Set the GPIO pin to 1
128 __delay_

→˓cycles(zeroCyclesOn-1);
129 __R30 &= ~(out);

→˓ // Clear the GPIO pin
(continues on next page)

4.2. PRU Cookbook 467

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

130 __delay_
→˓cycles(zeroCyclesOff-14);

131 }
132 }
133 }
134 // Send Reset
135 __R30 &= ~out; // Clear the GPIO pin
136 __delay_cycles(resetCycles);
137

138 // Wait
139 __delay_cycles(SPEED);
140 }
141

142 }
143 }
144 }
145 }

neo4.pru0.c

Run the code as usual.

bone$ make TARGET=neo4.pru0
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=neo4.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/neo4.pru0.out to /lib/firmware/
→˓am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

bone$ echo 0 0xff 0 127 > /dev/rpmsg_pru30
bone$ echo -1 > /dev/rpmsg_pru30

/dev/rpmsg_pru30 is a device driver that lets the ARM talk to the PRU. The first echo says to set the
0^th^ LED to RGB value 0xff 0 127. (Note: you can mix hex and decimal.) The second echo tells the
driver to send the data to the LEDs. Your 0^th^ LED should now be lit.

Discussion There’s a lot here. I’ll just hit some of the highlights in Line-by-line for neo4.pru0.c.

468 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Table 4.26: Line-by-line for neo4.pru0.c
Line Explanation
30 The CHAN_NAME of rpmsg-pru matches that prmsg_pru driver that is is already installed.

This connects this PRU to the driver.
32 The CHAN_PORT tells it to use port 30. That’s why we use /dev/rpmsg_pru30
40 payload[] is the buffer that receives the data from the ARM.
42-48 Same as the previous NeoPixel examples.
52 color[] is the state to be sent to the LEDs.
66-68 color[] is initialized.
70-85 Here are a number of details needed to set up the channel between the PRU and the ARM.
88 Here we wait until the ARM sends us some numbers.
99 Receive all the data from the ARM, store it in payload[].
101-
111

The data sent is: index red green blue. Pull off the index. If it’s in the right range, pull off
the red, green and blue values.

113 The NeoPixels want the data in GRB order. Shift and OR everything together.
116-
133

If the index = -1, send the contents of color to the LEDs. This code is same as before.

You can now use programs running on the ARM to send colors to the PRU.

neo-rainbow.py - A python program using /dev/rpmsg_pru30 shows an example.

Listing 4.101: neo-rainbow.py - A python program using
/dev/rpmsg_pru30

1 #!/usr/bin/python3
2 from time import sleep
3 import math
4

5 len = 24
6 amp = 12
7 f = 25
8 shift = 3
9 phase = 0

10

11 # Open a file
12 fo = open("/dev/rpmsg_pru30", "wb", 0)
13

14 while True:
15 for i in range(0, len):
16 r = (amp * (math.sin(2*math.pi*f*(i-phase-0*shift)/len) + 1)) + 1;
17 g = (amp * (math.sin(2*math.pi*f*(i-phase-1*shift)/len) + 1)) + 1;
18 b = (amp * (math.sin(2*math.pi*f*(i-phase-2*shift)/len) + 1)) + 1;
19 fo.write(b"%d %d %d %d \n" % (i, r, g, b))
20 # print("0 0 127 %d" % (i))
21

22 fo.write(b"-1 0 0 0\n");
23 phase = phase + 1
24 sleep(0.05)
25

26 # Close opened file
27 fo.close()

neo-rainbow.py

Line 19 writes the data to the PRU. Be sure to have a newline, or space after the last number, or you
numbers will get blurred together.

4.2. PRU Cookbook 469

BeagleBoard Docs, Release 0.0.9

Switching from pru0 to pru1 with rpmsg_pru There are three things you need to change when
switching from pru0 to pru1 when using rpmsg_pru.

1. The include on line 10 is switched to #include "resource_table_1.h" (0 is switched to a 1)

2. Line 17 is switched to #define HOST_INT ((uint32_t) 1 << 31) (30 is switched to 31.)

3. Lines 23 and 24 are switched to:

define TO_ARM_HOST 18
define FROM_ARM_HOST 19

These changes switch to the proper channel numbers to use pru1 instead of pru0.

RGB LED Matrix - No Integrated Drivers

Problem You have a RGB LED matrix (RGB LED Matrix – No Integrated Drivers (Falcon Christmas)) and
want to know at a low level how the PRU works.

Solution Here is the datasheet, but the best description I’ve found for the RGB Matrix is from Adafruit.
I’ve reproduced it here, with adjustments for the 64x32 matrix we are using.

information

There’s zero documention out there on how these matrices work, and no public datasheets or spec sheets
so we are going to try to document how they work.

First thing to notice is that there are 2048 RGB LEDs in a 64x32 matrix. Like pretty much every matrix
out there, you can’t drive all 2048 at once. One reason is that would require a lot of current, another
reason is that it would be really expensive to have so many pins. Instead, the matrix is divided into
16 interleaved sections/strips. The first section is the 1^st^ ‘line’ and the 17^th^ ‘line’ (64 x 2 RGB
LEDs = 128 RGB LEDs), the second is the 2^nd^ and 18^th^ line, etc until the last section which
is the 16^th^ and 32^nd^ line. You might be asking, why are the lines paired this way? wouldn’t
it be nicer to have the first section be the 1^st^ and 2^nd^ line, then 3^rd^ and 4^th^, until
the 15^th^ and 16^th^? The reason they do it this way is so that the lines are interleaved and look
better when refreshed, otherwise we’d see the stripes more clearly.

So, on the PCB is 24 LED driver chips. These are like 74HC595s but they have 16 outputs and they are
constant current. 16 outputs * 24 chips = 384 LEDs that can be controlled at once, and 128 * 3 (R G and
B) = 384. So now the design comes together: You have 384 outputs that can control one line at a time,
with each of 384 R, G and B LEDs either on or off. The controller (say an FPGA or microcontroller) selects
which section to currently draw (using LA, LB, LC and LD address pins - 4 bits can have 16 values). Once
the address is set, the controller clocks out 384 bits of data (48 bytes) and latches it. Then it increments
the address and clocks out another 384 bits, etc until it gets to address #15, then it sets the address back
to #0

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

That gives a good overview, but there are a few details missing. rgb_python.py - Python code for driving
RGB LED matrix is a functioning python program that gives a nice high-level view of how to drive the
display.

Listing 4.102: rgb_python.py - Python code for driving RGB LED
matrix

1 #!/usr/bin/env python3
2 import Adafruit_BBIO.GPIO as GPIO
3

4 # Define which functions are connect to which pins
(continues on next page)

470 Chapter 4. Books

https://cdn-shop.adafruit.com/product-files/2277/MI-T35P5RGBE-AE.pdf
https://www.adafruit.com/
https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

5 OE="P1_29" # Output Enable, active low
6 LAT="P1_36" # Latch, toggle after clocking in a row of pixels
7 CLK="P1_33" # Clock, toggle after each pixel
8

9 # Input data pins
10 R1="P2_10" # R1, G1, B1 are for the top rows (1-16) of pixels
11 G1="P2_8"
12 B1="P2_6"
13

14 R2="P2_4" # R2, G2, B2 are for the bottom rows (17-32) of pixels
15 G2="P2_2"
16 B2="P2_1"
17

18 LA="P2_32" # Address lines for which row (1-16 or 17-32) to update
19 LB="P2_30"
20 LC="P1_31"
21 LD="P2_34"
22

23 # Set everything as output ports
24 GPIO.setup(OE, GPIO.OUT)
25 GPIO.setup(LAT, GPIO.OUT)
26 GPIO.setup(CLK, GPIO.OUT)
27

28 GPIO.setup(R1, GPIO.OUT)
29 GPIO.setup(G1, GPIO.OUT)
30 GPIO.setup(B1, GPIO.OUT)
31 GPIO.setup(R2, GPIO.OUT)
32 GPIO.setup(G2, GPIO.OUT)
33 GPIO.setup(B2, GPIO.OUT)
34

35 GPIO.setup(LA, GPIO.OUT)
36 GPIO.setup(LB, GPIO.OUT)
37 GPIO.setup(LC, GPIO.OUT)
38 GPIO.setup(LD, GPIO.OUT)
39

40 GPIO.output(OE, 0) # Enable the display
41 GPIO.output(LAT, 0) # Set latch to low
42

43 while True:
44 for bank in range(64):
45 GPIO.output(LA, bank>>0&0x1) # Select rows
46 GPIO.output(LB, bank>>1&0x1)
47 GPIO.output(LC, bank>>2&0x1)
48 GPIO.output(LD, bank>>3&0x1)
49

50 # Shift the colors out. Here we only have four different
51 # colors to keep things simple.
52 for i in range(16):
53 GPIO.output(R1, 1) # Top row, white
54 GPIO.output(G1, 1)
55 GPIO.output(B1, 1)
56

57 GPIO.output(R2, 1) # Bottom row, red
58 GPIO.output(G2, 0)
59 GPIO.output(B2, 0)
60

(continues on next page)

4.2. PRU Cookbook 471

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

61 GPIO.output(CLK, 0) # Toggle clock
62 GPIO.output(CLK, 1)
63

64 GPIO.output(R1, 0) # Top row, black
65 GPIO.output(G1, 0)
66 GPIO.output(B1, 0)
67

68 GPIO.output(R2, 0) # Bottom row, green
69 GPIO.output(G2, 1)
70 GPIO.output(B2, 0)
71

72 GPIO.output(CLK, 0) # Toggle clock
73 GPIO.output(CLK, 1)
74

75 GPIO.output(OE, 1) # Disable display while updating
76 GPIO.output(LAT, 1) # Toggle latch
77 GPIO.output(LAT, 0)
78 GPIO.output(OE, 0) # Enable display

rgb_python.py

Be sure to run the rgb_python_setup.sh script before running the python code.

Listing 4.103: rgb_python_setup.sh
1 #!/bin/bash
2 # Setup for 64x32 RGB Matrix
3 export TARGET=rgb1.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = "Black"]; then

10 echo " Found"
11 pins=""
12 elif [$machine = "Blue"]; then
13 echo " Found"
14 pins=""
15 elif [$machine = "PocketBeagle"]; then
16 echo " Found"
17 prupins="P2_32 P1_31 P1_33 P1_29 P2_30 P2_34 P1_36"
18 gpiopins="P2_10 P2_06 P2_04 P2_01 P2_08 P2_02"
19 # Uncomment for J2
20 # gpiopins="$gpiopins P2_27 P2_25 P2_05 P2_24 P2_22 P2_18"
21 else
22 echo " Not Found"
23 pins=""
24 fi
25

26 for pin in $prupins
27 do
28 echo $pin
29 # config-pin $pin pruout
30 config-pin $pin gpio
31 config-pin $pin out
32 config-pin -q $pin

(continues on next page)

472 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

33 done
34

35 for pin in $gpiopins
36 do
37 echo $pin
38 config-pin $pin gpio
39 config-pin $pin out
40 config-pin -q $pin
41 done

rgb_python_setup.sh

Make sure line 29 is commented out and line 30 is uncommented. Later we’ll configure for _pruout_,
but for now the python code doesn’t use the PRU outs.

config-pin $pin pruout
config-pin $pin out

Your display should look like Display running rgb_python.py.

Fig. 4.173: Display running rgb_python.py

So why do only two lines appear at a time? That’s how the display works. Currently lines 6 and 22 are
showing, then a moment later 7 and 23 show, etc. The display can only display two lines at a time, so
it cycles through all the lines. Unfortunately, python is too slow to make the display appear all at once.
Here’s where the PRU comes in.

:ref:blocks_rgb1 is the PRU code to drive the RGB LED matrix. Be sure to run bone$ source
rgb_setup.sh first.

Listing 4.104: PRU code for driving the RGB LED matrix
1 // This code drives the RGB LED Matrix on the 1st Connector
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"

(continues on next page)

4.2. PRU Cookbook 473

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

5 #include "prugpio.h"
6 #include "rgb_pocket.h"
7

8 #define DELAY 10 // Number of cycles (5ns each) to wait after a write
9

10 volatile register uint32_t __R30;
11 volatile register uint32_t __R31;
12

13 void main(void)
14 {
15 // Set up the pointers to each of the GPIO ports
16 uint32_t *gpio[] = {
17 (uint32_t *) GPIO0,
18 (uint32_t *) GPIO1,
19 (uint32_t *) GPIO2,
20 (uint32_t *) GPIO3
21 };
22

23 uint32_t i, row;
24

25 while(1) {
26 for(row=0; row<16; row++) {
27 // Set the row address
28 // Here we take advantage of the select bits (LA,LB,LC,LD)
29 // being sequential in the R30 register (bits 2,3,4,5)
30 // We shift row over so it lines up with the select bits
31 // Oring (|=) with R30 sets bits to 1 and
32 // Anding (&=) clears bits to 0, the 0xffc mask makes sure the
33 // other bits aren't changed.
34 __R30 |= row<<pru_sel0;
35 __R30 &= (row<<pru_sel0)|0xffc3;
36

37 for(i=0; i<64; i++) {
38 // Top row white
39 // Combining these to one write works because they are all in
40 // the same gpio port
41 gpio[r11_gpio][GPIO_SETDATAOUT] = r11_pin | g11_pin | b11_

→˓pin;
42 __delay_cycles(DELAY);;
43

44 // Bottom row red
45 gpio[r12_gpio][GPIO_SETDATAOUT] = r12_pin;
46 __delay_cycles(DELAY);
47 gpio[r12_gpio][GPIO_CLEARDATAOUT] = g12_pin | b12_pin;
48 __delay_cycles(DELAY);
49

50 __R30 |= pru_clock; // Toggle clock
51 __delay_cycles(DELAY);
52 __R30 &= ~pru_clock;
53 __delay_cycles(DELAY);
54

55 // Top row black
56 gpio[r11_gpio][GPIO_CLEARDATAOUT] = r11_pin | g11_pin | b11_

→˓pin;
57 __delay_cycles(DELAY);
58

(continues on next page)

474 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

59 // Bottom row green
60 gpio[r12_gpio][GPIO_CLEARDATAOUT] = r12_pin | b12_pin;
61 __delay_cycles(DELAY);
62 gpio[r12_gpio][GPIO_SETDATAOUT] = g12_pin;
63 __delay_cycles(DELAY);
64

65 __R30 |= pru_clock; // Toggle clock
66 __delay_cycles(DELAY);
67 __R30 &= ~pru_clock;
68 __delay_cycles(DELAY);
69 }
70 __R30 |= pru_oe; // Disable display
71 __delay_cycles(DELAY);
72 __R30 |= pru_latch; // Toggle latch
73 __delay_cycles(DELAY);
74 __R30 &= ~pru_latch;
75 __delay_cycles(DELAY);
76 __R30 &= ~pru_oe; // Enable display
77 __delay_cycles(DELAY);
78 }
79 }
80 }

rgb1.pru0.c

The results are shown in Display running rgb1.c on PRU 0.

Fig. 4.174: Display running rgb1.c on PRU 0

The PRU is fast enough to quickly write to the display so that it appears as if all the LEDs are on at once.

Discussion There are a lot of details needed to make this simple display work. Let’s go over some of
them.

First, the connector looks like RGB Matrix J1 connector.

4.2. PRU Cookbook 475

BeagleBoard Docs, Release 0.0.9

Fig. 4.175: RGB Matrix J1 connector

476 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Notice the labels on the connect match the labels in the code. PocketScroller pin table shows how the pins
on the display are mapped to the pins on the Pocket Beagle.

Table 4.27: PocketScroller pin table
J1 Connector
Pin

Pocket Head-
ers

gpio port and bit num-
ber

Linux gpio num-
ber

PRU R30 bit num-
ber

R1 P2_10 1-20 52
B1 P2_06 1-25 57
R2 P2_04 1-26 58
B2 P2_01 1-18 50
LA P2_32 3-16 112 PRU0.2
LC P1_31 3-18 114 PRU0.4
CLK P1_33 3-15 111 PRU0.1
OE P1_29 3-21 117 PRU0.7
G1 P2_08 1-28 60
G2 P2_02 1-27 59
LB P2_30 3-17 113 PRU0.3
LD P2_34 3-19 115 PRU0.5
LAT P1_36 3-14 110 PRU0.0

The J1 mapping to gpio port and bit number comes from https://github.com/FalconChristmas/
fpp/blob/master/capes/pb/panels/PocketScroller.json. The gpio port and bit num-
ber mapping to Pocket Headers comes from https://docs.google.com/spreadsheets/d/
1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0.

Oscilloscope display of CLK, OE, LAT and R1 shows four of the signal waveforms driving the RGB LED
matrix.

The top waveform is the CLK, the next is OE, followed by LAT and finally R1. The OE (output enable) is
active low, so most of the time the display is visible. The sequence is:

• Put data on the R1, G1, B1, R2, G2 and B2 lines

• Toggle the clock.

• Repeat the first two steps as one row of data is transfered. There are 384 LEDs (2 rows of 32 RGB
LEDs times 3 LED per RGB), but we are clocking in six bits (R1, G1, etc.) at a time, so 384/6=64
values need to be clocked in.

• Once all the values are in, disable the display (OE goes high)

• Then toggle the latch (LAT) to latch the new data.

• Turn the display back on.

• Increment the address lines (LA, LB, LC and LD) to point to the next rows.

• Keep repeating the above to keep the display lit.

Using the PRU we are able to run the clock a about 2.9 MKHz. FPP waveforms shows the optimized
assembler code used by FPP clocks in at some 6.3 MHz. So the compiler is doing a pretty good job, but
you can run some two times faster if you want to use assembly code. In fairness to FPP, it’s having to
pull it’s data out of RAM to display it, so isn’t not a good comparision.

Getting More Colors The Adafruit description goes on to say:

information

The only downside of this technique is that despite being very simple and fast, it has no PWM control
built-in! The controller can only set the LEDs on or off. So what do you do when you want full color?
You actually need to draw the entire matrix over and over again at very high speeds to PWM the matrix

4.2. PRU Cookbook 477

https://github.com/FalconChristmas/fpp/blob/master/capes/pb/panels/PocketScroller.json
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/panels/PocketScroller.json
https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0
https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0

BeagleBoard Docs, Release 0.0.9

Fig. 4.176: Oscilloscope display of CLK, OE, LAT and R1

478 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.177: FPP waveforms

4.2. PRU Cookbook 479

BeagleBoard Docs, Release 0.0.9

manually. For that reason, you need to have a very fast controller (50 MHz is a minimum) if you want
to do a lot of colors and motion video and have it look good.

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

This is what FPP does, but it’s beyond the scope of this project.

Compiling and Inserting rpmsg_pru

Problem Your Beagle doesn’t have rpmsg_pru.

Solution Do the following.

bone$ *cd 05blocks/code/module*
bone$ *sudo apt install linux-headers-\`uname -r`*
bone$ *wget https://github.com/beagleboard/linux/raw/4.9/drivers/rpmsg/rpmsg_pru.c*
bone$ *make*
make -C /lib/modules/4.9.88-ti-r111/build M=$PWD
make[1]: Entering directory '/usr/src/linux-headers-4.9.88-ti-r111'

LD /home/debian/PRUCookbook/docs/05blocks/code/module/built-in.o
CC [M] /home/debian/PRUCookbook/docs/05blocks/code/module/rpmsg_client_sample.o
CC [M] /home/debian/PRUCookbook/docs/05blocks/code/module/rpmsg_pru.o
Building modules, stage 2.
MODPOST 2 modules
CC /home/debian/PRUCookbook/docs/05blocks/code/module/rpmsg_client_sample.mod.o
LD [M] /home/debian/PRUCookbook/docs/05blocks/code/module/rpmsg_client_sample.ko
CC /home/debian/PRUCookbook/docs/05blocks/code/module/rpmsg_pru.mod.o
LD [M] /home/debian/PRUCookbook/docs/05blocks/code/module/rpmsg_pru.ko

make[1]: Leaving directory '/usr/src/linux-headers-4.9.88-ti-r111'
bone$ *sudo insmod rpmsg_pru.ko*
bone$ *lsmod | grep rpm*
rpmsg_pru 5799 2
virtio_rpmsg_bus 13620 0
rpmsg_core 8537 2 rpmsg_pru,virtio_rpmsg_bus

It’s now installed and ready to go.

Listing 4.105: copyright.c
1 /*
2 * Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/
3 *
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * * Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * * Neither the name of Texas Instruments Incorporated nor the names of
18 * its contributors may be used to endorse or promote products derived

(continues on next page)

480 Chapter 4. Books

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */

copyright.c

4.2.6 Accessing More I/O

So far the examples have shown how to access the GPIO pins on the BeagleBone Black’s P9 header and
through the pass:[__]R30 register. Below shows how more GPIO pins can be accessed.

The following are resources used in this chapter.

Note: Resources

• P8 Header Table

• P9 Header Table

• AM572x Technical Reference Manual (AI)

• AM335x Technical Reference Manual (All others)

• PRU Assembly Language Tools

Editing /boot/uEnv.txt to Access the P8 Header on the Black

Problem When I try to configure some pins on the P8 header of the Black I get an error.

1 bone$ *config-pin P8_28 pruout*
2 ERROR: open() for /sys/devices/platform/ocp/ocp:P8_28_pinmux/state failed, No such␣

→˓file or directory

Solution On the images for the BeagleBone Black, the HDMI display driver is enabled by default and
uses many of the P8 pins. If you are not using HDMI video (or the HDI audio, or even the eMMC) you
can disable it by editing /boot/uEnv.txt

Open /boot/uEnv.txt and scroll down aways until you see:

Listing 4.106: /boot/uEnv.txt
1 ###Disable auto loading of virtual capes (emmc/video/wireless/adc)
2 #disable_uboot_overlay_emmc=1
3 disable_uboot_overlay_video=1
4 #disable_uboot_overlay_audio=1

4.2. PRU Cookbook 481

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf

BeagleBoard Docs, Release 0.0.9

Uncomment the lines that correspond to the devices you want to disable and free up their pins.

Tip: P8 Header Table shows what pins are allocated for what.

Save the file and reboot. You now have access to the P8 pins.

Accessing gpio

Problem I’ve used up all the GPIO in pass:[__]R30, where can I get more?

Solution So far we have focused on using PRU 0. Mapping bit positions to pin names shows that PRU
0 can access ten GPIO pins on the BeagleBone Black. If you use PRU 1 you can get to an additional 14
pins (if they aren’t in use for other things.)

What if you need even more GPIO pins? You can access any GPIO pin by going through the Open-Core
Protocol (OCP) port.

Fig. 4.178: PRU Integration

The figure above shows we’ve been using the _Enhanced GPIO interface when using pass:[__]R30, but
it also shows you can use the OCP. You get access to many more GPIO pins, but it’s a slower access.

Listing 4.107: gpio.pru0.c
1 // This code accesses GPIO without using R30 and R31
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include "prugpio.h"

(continues on next page)

482 Chapter 4. Books

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

6

7 #define P9_11 (0x1<<30) // Bit position tied to P9_11␣
→˓on Black

8 #define P2_05 (0x1<<30) // Bit position tied to P2_05␣
→˓on Pocket

9

10 volatile register uint32_t __R30;
11 volatile register uint32_t __R31;
12

13 void main(void)
14 {
15 uint32_t *gpio0 = (uint32_t *)GPIO0;
16

17 while(1) {
18 gpio0[GPIO_SETDATAOUT] = P9_11;
19 __delay_cycles(100000000);
20 gpio0[GPIO_CLEARDATAOUT] = P9_11;
21 __delay_cycles(100000000);
22 }
23 }

gpio.pru0.c

This code will toggle P9_11 on and off. Here’s the setup file.

Listing 4.108: setup.sh
1 #!/bin/bash
2

3 export TARGET=gpio.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = "Black"]; then

10 echo " Found"
11 pins="P9_11"
12 elif [$machine = "Blue"]; then
13 echo " Found"
14 pins=""
15 elif [$machine = "PocketBeagle"]; then
16 echo " Found"
17 pins="P2_05"
18 else
19 echo " Not Found"
20 pins=""
21 fi
22

23 for pin in $pins
24 do
25 echo $pin
26 config-pin $pin gpio
27 config-pin -q $pin
28 done

setup.sh

Notice in the code config-pin set P9_11 to gpio, not pruout. This is because are are using the OCP

4.2. PRU Cookbook 483

BeagleBoard Docs, Release 0.0.9

interface to the pin, not the usual PRU interface.

Set your exports and make.

1 bone$ *source setup.sh*
2 TARGET=gpio.pru0
3 ...
4 bone$ *make*
5 /var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=gpio.pru0
6 - Stopping PRU 0
7 - copying firmware file /tmp/cloud9-examples/gpio.pru0.out to /lib/firmware/am335x-

→˓pru0-fw
8 write_init_pins.sh
9 - Starting PRU 0

10 MODEL = TI_AM335x_BeagleBone_Black
11 PROC = pru
12 PRUN = 0
13 PRU_DIR = /sys/class/remoteproc/remoteproc1

Discussion When you run the code you see P9_11 toggling on and off. Let’s go through the code
line-by-line to see what’s happening.

484 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Table 4.28: gpio.pru0.c line-by-line
Line Explanation
2-5 Standard includes
5 The AM335x has four 32-bit GPIO ports. Lines

55-58 of prugpio.h define the addresses for each
of the ports. You can find these in Table 2-2 page
180 of the AM335x TRM 180. Look up P9_11
in the P9 header. Under the _Mode7_ column
you see gpio0[30]. This means P9_11 is bit 30
on GPIO port 0. Therefore we will use GPIO0 in
this code. You can also run gpioinfo and look
for P9_11.

5 Line 103 of prugpio.h defines the address offset
from GIO0 that will allow us to _clear_ any (or
all) bits in GPIO port 0. Other architectures re-
quire you to read a port, then change some bit,
then write it out again, three steps. Here we can
do the same by writing to one location, just one
step.

5 Line 104 of prugpio.h is like above, but for _set-
ting_ bits.

5 Using this offset of line 105 of prugpio.h lets us
just read the bits without changing them.

7,8 This shifts 0x1 to the 30^th^ bit position, which
is the one corresponding to P9_11.

15 Here we initialize gpio0 to point to the start of
GPIO port 0’s control registers.

18
gpio0[GPIO_SETDATAOUT] refers to the
SETDATAOUT register of port 0. Writing to
this register turns on the bits

where 1’s are written, but leaves alone the
bits where 0’s are.

19 Wait 100,000,000 cycles, which is 0.5 seconds.
20 This is line 18, but the output bit is set to 0 where

1’s are written.

How fast can it go? This approach to GPIO goes through the slower OCP interface. If you set
pass:[__]delay_cycles(0) you can see how fast it is.

The period is 80ns which is 12.MHz. That’s about one forth the speed of the pass:[__]R30 method, but
still not bad.

If you are using an oscilloscope, look closely and you’ll see the following.

The PRU is still as solid as before in it’s timing, but now it’s going through the OCP interface. This
interface is shared with other parts of the system, therefore the sometimes the PRU must wait for the
other parts to finish. When this happens the pulse width is a bit longer than usual thus adding jitter to
the output.

For many applications a few nanoseconds of jitter is unimportant and this GPIO interface can be used. If
your application needs better timing, use the pass:[__]R30 interface.

4.2. PRU Cookbook 485

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf

BeagleBoard Docs, Release 0.0.9

Fig. 4.179: gpio.pru0.c with pass:[__]delay_cycles(0)

486 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.180: PWM with jitter

4.2. PRU Cookbook 487

BeagleBoard Docs, Release 0.0.9

Configuring for UIO Instead of RemoteProc

Problem You have some legacy PRU code that uses UIO instead of remoteproc and you want to switch
to UIO.

Solution Edit /boot/uEnt.txt and search for uio. I find

###pru_uio (4.4.x-ti, 4.9.x-ti, 4.14.x-ti & mainline/bone kernel)
uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo

Uncomment the uboot line. Look for other lines with uboot_overlay_pru= and be sure they are com-
mented out.

Reboot your Bone.

bone$ sudo reboot

Check that UIO is running.

bone$ lsmod | grep uio
uio_pruss 16384 0
uio_pdrv_genirq 16384 0
uio 20480 2 uio_pruss,uio_pdrv_genirq

You are now ready to run the legacy PRU code.

Converting pasm Assembly Code to clpru

Problem You have some legacy assembly code written in pasm and it won’t assemble with clpru.

Solution Generally there is a simple mapping from pasm to clpru. pasm vs. clpru notes what needs to
be changed. I have a less complete version on my eLinux.org site.

Discussion The clpru assembly can be found in PRU Assembly Language Tools.

4.2.7 More Performance

So far in all our examples we’ve been able to meet our timing goals by writing our code in the C program-
ming language. The C compiler does a suprisingly good job at generating code, most the time. However
there are times when very precise timing is needed and the compiler isn’t doing it.

At these times you need to write in assembly language. This chapter introduces the PRU assembler and
shows how to call assembly code from C. Detailing on how to program in assembly are beyond the scope
of this text.

The following are resources used in this chapter.

Note: Resources

• PRU Optimizing C/C++ Compiler, v2.2, User’s Guide

• PRU Assembly Language Tools User’s Guide

• PRU Assembly Instruction User Guide

488 Chapter 4. Books

http://processors.wiki.ti.com/index.php/PRU_Assembly_Instructions#pasm_vs._clpru
https://elinux.org/EBC_Exercise_30_PRU_porting_pasm_to_clpru
http://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/ug/spruij2/spruij2.pdf

BeagleBoard Docs, Release 0.0.9

Calling Assembly from C

Problem You have some C code and you want to call an assembly language routine from it.

Solution You need to do two things, write the assembler file and modify the Makefile to in-
clude it. For example, let’s write our own my_delay_cycles routine in in assembly. The intrinsic
pass:[__]delay_cycles must be passed a compile time constant. Our new delay_cycles can take
a runtime delay value.

delay-test.pru0.c is much like our other c code, but on line 10 we declare my_delay_cycles and then on
lines 24 and 26 we’ll call it with an argument of 1.

Listing 4.109: delay-test.pru0.c
1 // Shows how to call an assembly routine with one parameter
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include "prugpio.h"
6

7 // The function is defined in delay.asm in same dir
8 // We just need to add a declaration here, the defination can be
9 // seperately linked

10 extern void my_delay_cycles(uint32_t);
11

12 volatile register uint32_t __R30;
13 volatile register uint32_t __R31;
14

15 void main(void)
16 {
17 uint32_t gpio = P9_31; // Select which pin to toggle.;
18

19 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
20 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
21

22 while(1) {
23 __R30 |= gpio; // Set the GPIO pin to 1
24 my_delay_cycles(1);
25 __R30 &= ~gpio; // Clear the GPIO pin
26 my_delay_cycles(1);
27 }
28 }

delay-test.pru0.c

delay.pru0.asm is the assembly code.

Listing 4.110: delay.pru0.asm
1 ; This is an example of how to call an assembly routine from C.
2 ; Mark A. Yoder, 9-July-2018
3 .global my_delay_cycles
4 my_delay_cycles:
5 delay:
6 sub r14, r14, 1 ; The first argument is␣

→˓passed in r14
7 qbne delay, r14, 0
8

9 jmp r3.w2 ; r3 contains the return␣
→˓address (continues on next page)

4.2. PRU Cookbook 489

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

delay.pru0.asm

The Makefile has one addition that needs to be made to compile both delay-test.pru0.c and de-
lay.pru0.asm. If you look in the local Makefile you’ll see:

Listing 4.111: Makefile
1 include /var/lib/cloud9/common/Makefile

Makefile

This Makefle includes a common Makfile at /var/lib/cloud9/common/Makefile, this the Makefile you
need to edit. Edit /var/lib/cloud9/common/Makefile and go to line 195.

$(GEN_DIR)/%.out: $(GEN_DIR)/%.o *$(GEN_DIR)/$(TARGETasm).o*
@mkdir -p $(GEN_DIR)
@echo 'LD $^'
$(eval $(call target-to-proc,$@))
$(eval $(call proc-to-build-vars,$@))
@$(LD) $@ $^ $(LDFLAGS)

Add *(GEN_DIR)/$(TARGETasm).o* as shown in bold above. You will want to remove this addition once
you are done with this example since it will break the other examples.

The following will compile and run everything.

bone$ *config-pin P9_31 pruout*
bone$ *make TARGET=delay-test.pru0 TARGETasm=delay.pru0*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,TARGET=delay-
→˓test.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/delay-test.pru0.out to /lib/firmware/
→˓am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

The resulting output is shown in Output of my_delay_cycles().

Notice the on time is about 35ns and the off time is 30ns.

Discission There is much to explain here. Let’s start with delay.pru0.asm.

490 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Fig. 4.181: Output of my_delay_cycles()

4.2. PRU Cookbook 491

BeagleBoard Docs, Release 0.0.9

Table 4.29: Line-by-line of delay.pru0.asm
Line Explanation
3 Declare my_delay_cycles to be global so the linker can find it.
4 Label the starting point for my_delay_cycles.
5 Label for our delay loop.
6 The first argument is passed in register r14. Page 111 of PRU Optimizing C/C++ Compiler,

v2.2, User’s Guide gives the argument passing convention. Registers r14 to r29 are used to pass
arguments, if there are more arguments, the argument stack (r4) is used. The other register
conventions are found on page 108. Here we subtract 1 from r14 and save it back into r14.

7 qbne is a quick branch if not equal.
9 Once we’ve delayed enough we drop through the quick branch and hit the jump. The upper

bits of register r3 has the return address, therefore we return to the c code.

Output of my_delay_cycles() shows the on time is 35ns and the off time is 30ns. With 5ns/cycle this gives
7 cycles on and 6 off. These times make sense because each instruction takes a cycle and you have, set
R30, jump to my_delay_cycles, sub, qbne, jmp. Plus the instruction (not seen) that initilizes r14 to the
passed value. That’s a total of six instructions. The extra instruction is the branch at the bottom of the
while loop.

Returning a Value from Assembly

Problem Your assembly code needs to return a value.

Solution R14 is how the return value is passed back. delay-test2.pru0.c shows the c code.

Listing 4.112: delay-test2.pru0.c
1 // Shows how to call an assembly routine with a return value
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include "resource_table_empty.h"
5 #include "prugpio.h"
6

7 #define TEST 100
8

9 // The function is defined in delay.asm in same dir
10 // We just need to add a declaration here, the defination can be
11 // seperately linked
12 extern uint32_t my_delay_cycles(uint32_t);
13

14 uint32_t ret;
15

16 volatile register uint32_t __R30;
17 volatile register uint32_t __R31;
18

19 void main(void)
20 {
21 uint32_t gpio = P9_31; // Select which pin to toggle.;
22

23 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
24 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
25

26 while(1) {
27 __R30 |= gpio; // Set the GPIO pin to 1
28 ret = my_delay_cycles(1);

(continues on next page)

492 Chapter 4. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

29 __R30 &= ~gpio; // Clear the GPIO pin
30 ret = my_delay_cycles(1);
31 }
32 }

delay-test2.pru0.c

delay2.pru0.asm is the assembly code.

Listing 4.113: delay2.pru0.asm
1 ; This is an example of how to call an assembly routine from C with a retun value.
2 ; Mark A. Yoder, 9-July-2018
3

4 .cdecls "delay-test2.pru0.c"
5

6 .global my_delay_cycles
7 my_delay_cycles:
8 delay:
9 sub r14, r14, 1 ; The first argument is␣

→˓passed in r14
10 qbne delay, r14, 0
11

12 ldi r14, TEST ; TEST is defined in delay-test2.c
13 ; r14 is the return register
14

15 jmp r3.w2 ; r3 contains the return␣
→˓address

delay2.pru0.asm

An additional feature is shown in line 4 of delay2.pru0.asm. The .cdecls "delay-test2.pru0.c" says
to include any defines from delay-test2.pru0.c In this example, line 6 of delay-test2.pru0.c #defines
TEST and line 12 of delay2.pru0.asm reference it.

Using the Built-In Counter for Timing

Problem I want to count how many cycles my routine takes.

Solution Each PRU has a CYCLE register which counts the number of cycles since the PRU was enabled.
They also have a STALL register that counts how many times the PRU stalled fetching an instruction.
cycle.pru0.c - Code to count cycles. shows they are used.

Listing 4.114: cycle.pru0.c - Code to count cycles.
1 // Access the CYCLE and STALL registers
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include <pru_ctrl.h>
5 #include "resource_table_empty.h"
6 #include "prugpio.h"
7

8 volatile register uint32_t __R30;
9 volatile register uint32_t __R31;

10

11 void main(void)
12 {

(continues on next page)

4.2. PRU Cookbook 493

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

13 uint32_t gpio = P9_31; // Select which pin to toggle.;
14

15 // These will be kept in registers and never witten to DRAM
16 uint32_t cycle, stall;
17

18 // Clear SYSCFG[STANDBY_INIT] to enable OCP master port
19 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
20

21 PRU0_CTRL.CTRL_bit.CTR_EN = 1; // Enable cycle counter
22

23 __R30 |= gpio; // Set the GPIO pin to 1
24 // Reset cycle counter, cycle is on the right side to force the compiler
25 // to put it in it's own register
26 PRU0_CTRL.CYCLE = cycle;
27 __R30 &= ~gpio; // Clear the GPIO pin
28 cycle = PRU0_CTRL.CYCLE; // Read cycle and store in a register
29 stall = PRU0_CTRL.STALL; // Ditto for stall
30

31 __halt();
32 }

cycle.pru0.c

Discission The code is mostly the same as other examples. cycle and stall end up in registers which
we can read using prudebug. Line-by-line for cycle.pru0.c is the Line-by-line.

Table 4.30: Line-by-line for cycle.pru0.c
Line Explanation
4 Include needed to reference CYCLE and STALL.
16 Declaring cycle and stall. The compiler will optimize these and just keep them in registers. We’ll

have to look at the cycle.pru0.lst file to see where they are stored.
21 Enables CYCLE.
26 Reset CYCLE. It ignores the value assigned to it and always sets it to 0. cycle is on the right

hand side to make the compiler give it it’s own register.
28,
29

Reads the CYCLE and STALL values into registers.

You can see where cycle and stall are stored by looking into /tmp/cloud9-examples/cycle.pru0.lst Lines
113..119.

Listing 4.115: /tmp/cloud9-examples/cycle.pru0.lst Lines
113..119

113 102 .dwpsn file "cycle.pru0.c",line 23,column 2,is_stmt,isa 0
114 103;--
115 104; 23 | PRU0_CTRL.CTRL_bit.CTR_EN = 1; // Enable cycle counter
116 105;--
117 106 0000000c 200080240002C0 LDI32 r0, 0x00022000 ; [ALU_PRU]␣

→˓|23| OC1
118 107 00000014 000000F1002081 LBBO &r1, r0, 0, 4 ; [ALU_PRU]␣

→˓|23|
119 108 00000018 0000001F03E1E1 SET r1, r1, 0x00000003 ; [ALU_PRU]␣

→˓|23|

cycle.pru0.lst

494 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

Here the LDI32 instruction loads the address 0x22000 into r0. This is the offset to the CTRL registers.
Later in the file we see /tmp/cloud9-examples/cycle.pru0.lst Lines 146..152.

Listing 4.116: /tmp/cloud9-examples/cycle.pru0.lst Lines
146..152

146 129;--
147 130; 30 | cycle = PRU0_CTRL.CYCLE; // Read cycle and store in a register
148 131;--
149 132 0000002c 000000F10C2081 LBBO &r1, r0, 12, 4 ; [ALU_PRU]␣

→˓|30| OC1
150 133 .dwpsn file "cycle.pru0.c",line 31,column 2,is_stmt,isa 0
151 134;--
152 135; 31 | stall = PRU0_CTRL.STALL; // Ditto for stall

cycle.pru0.lst

The first LBBO takes the contents of r0 and adds the offset 12 to it and copies 4 bytes into r1. This points
to CYCLE, so r1 has the contents of CYCLE.

The second LBBO does the same, but with offset 16, which points to STALL, thus STALL is now in r0.

Now fire up prudebug and look at those registers.

bone$ *sudo prudebug*
PRU0> *r*
r
r
Register info for PRU0

Control register: 0x00000009
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_ENABLED, NOT_SLEEPING, PROC_DISABLED

Program counter: 0x0012
Current instruction: HALT

R00: *0x00000005* R08: 0x00000200 R16: 0x000003c6 R24: 0x00110210
R01: *0x00000003* R09: 0x00000000 R17: 0x00000000 R25: 0x00000000
R02: 0x000000fc R10: 0xfff4ea57 R18: 0x000003e6 R26: 0x6e616843
R03: 0x0004272c R11: 0x5fac6373 R19: 0x30203020 R27: 0x206c656e
R04: 0xffffffff R12: 0x59bfeafc R20: 0x0000000a R28: 0x00003033
R05: 0x00000007 R13: 0xa4c19eaf R21: 0x00757270 R29: 0x02100000
R06: 0xefd30a00 R14: 0x00000005 R22: 0x0000001e R30: 0xa03f9990
R07: 0x00020024 R15: 0x00000003 R23: 0x00000000 R31: 0x00000000

So cycle is 3 and stall is 5. It must be one cycle to clear the GPIO and 2 cycles to read the CYCLE
register and save it in the register. It’s interesting there are 5 stall cycles.

If you switch the order of lines 30 and 31 you’ll see cycle is 7 and stall is 2. cycle now includes the
time needed to read stall and stall no longer includes the time to read cycle.

Xout and Xin - Transfering Between PRUs

Problem I need to transfer data between PRUs quickly.

Solution The pass:[__]xout() and pass:[__]xin() intrinsics are able to transfer up to 30 registers
between PRU 0 and PRU 1 quickly. xout.pru0.c shows how xout() running on PRU 0 transfers six
registers to PRU 1.

4.2. PRU Cookbook 495

BeagleBoard Docs, Release 0.0.9

Listing 4.117: xout.pru0.c
1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/

→˓trees/master/examples/am335x/PRU_Direct_Connect0
2 #include <stdint.h>
3 #include <pru_intc.h>
4 #include "resource_table_pru0.h"
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 typedef struct {
10 uint32_t reg5;
11 uint32_t reg6;
12 uint32_t reg7;
13 uint32_t reg8;
14 uint32_t reg9;
15 uint32_t reg10;
16 } bufferData;
17

18 bufferData dmemBuf;
19

20 /* PRU-to-ARM interrupt */
21 #define PRU1_PRU0_INTERRUPT (18)
22 #define PRU0_ARM_INTERRUPT (19+16)
23

24 void main(void)
25 {
26 /* Clear the status of all interrupts */
27 CT_INTC.SECR0 = 0xFFFFFFFF;
28 CT_INTC.SECR1 = 0xFFFFFFFF;
29

30 /* Load the buffer with default values to transfer */
31 dmemBuf.reg5 = 0xDEADBEEF;
32 dmemBuf.reg6 = 0xAAAAAAAA;
33 dmemBuf.reg7 = 0x12345678;
34 dmemBuf.reg8 = 0xBBBBBBBB;
35 dmemBuf.reg9 = 0x87654321;
36 dmemBuf.reg10 = 0xCCCCCCCC;
37

38 /* Poll until R31.30 (PRU0 interrupt) is set
39 * This signals PRU1 is initialized */
40 while ((__R31 & (1<<30)) == 0) {
41 }
42

43 /* XFR registers R5-R10 from PRU0 to PRU1 */
44 /* 14 is the device_id that signifies a PRU to PRU transfer */
45 __xout(14, 5, 0, dmemBuf);
46

47 /* Clear the status of the interrupt */
48 CT_INTC.SICR = PRU1_PRU0_INTERRUPT;
49

50 /* Halt the PRU core */
51 __halt();
52 }

xout.pru0.c

496 Chapter 4. Books

BeagleBoard Docs, Release 0.0.9

PRU 1 waits at line 41 until PRU 0 signals it. xin.pru1.c sends sends an interupt to PRU 0 and waits for
it to send the data.

Listing 4.118: xin.pru1.c
1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-package/

→˓trees/master/examples/am335x/PRU_Direct_Connect1
2 #include <stdint.h>
3 #include "resource_table_empty.h"
4

5 volatile register uint32_t __R30;
6 volatile register uint32_t __R31;
7

8 typedef struct {
9 uint32_t reg5;

10 uint32_t reg6;
11 uint32_t reg7;
12 uint32_t reg8;
13 uint32_t reg9;
14 uint32_t reg10;
15 } bufferData;
16

17 bufferData dmemBuf;
18

19 /* PRU-to-ARM interrupt */
20 #define PRU1_PRU0_INTERRUPT (18)
21 #define PRU1_ARM_INTERRUPT (20+16)
22

23 void main(void)
24 {
25 /* Let PRU0 know that I am awake */
26 __R31 = PRU1_PRU0_INTERRUPT+16;
27

28 /* XFR registers R5-R10 from PRU0 to PRU1 */
29 /* 14 is the device_id that signifies a PRU to PRU transfer */
30 __xin(14, 5, 0, dmemBuf);
31

32 /* Halt the PRU core */
33 __halt();
34 }

xin.pru1.c

Use prudebug to see registers R5-R10 are transfered from PRU 0 to PRU 1.

PRU0> *r*
Register info for PRU0

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING, PROC_

→˓DISABLED

Program counter: 0x0026
Current instruction: HALT

R00: 0x00000012 *R08: 0xbbbbbbbb* R16: 0x000003c6 R24: 0x00110210
R01: 0x00020000 *R09: 0x87654321* R17: 0x00000000 R25: 0x00000000
R02: 0x000000e4 *R10: 0xcccccccc* R18: 0x000003e6 R26: 0x6e616843
R03: 0x0004272c R11: 0x5fac6373 R19: 0x30203020 R27: 0x206c656e
R04: 0xffffffff R12: 0x59bfeafc R20: 0x0000000a R28: 0x00003033

(continues on next page)

4.2. PRU Cookbook 497

BeagleBoard Docs, Release 0.0.9

(continued from previous page)

R05: 0xdeadbeef R13: 0xa4c19eaf R21: 0x00757270 R29: 0x02100000
R06: 0xaaaaaaaa R14: 0x00000005 R22: 0x0000001e R30: 0xa03f9990
R07: 0x12345678 R15: 0x00000003 R23: 0x00000000 R31: 0x00000000

PRU0> *pru 1*
pru 1
Active PRU is PRU1.

PRU1> *r*
r
Register info for PRU1

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING, PROC_

→˓DISABLED

Program counter: 0x000b
Current instruction: HALT

R00: 0x00000100 *R08: 0xbbbbbbbb* R16: 0xe9da228b R24: 0x28113189
R01: 0xe48cdb1f *R09: 0x87654321* R17: 0x66621777 R25: 0xddd29ab1
R02: 0x000000e4 *R10: 0xcccccccc* R18: 0x661f83ea R26: 0xcf1cd4a5
R03: 0x0004db97 R11: 0xdec387d5 R19: 0xa85adb78 R27: 0x70af2d02
R04: 0xa90e496f R12: 0xbeac3878 R20: 0x048fff22 R28: 0x7465f5f0
R05: 0xdeadbeef R13: 0x5777b488 R21: 0xa32977c7 R29: 0xae96b530
R06: 0xaaaaaaaa R14: 0xffa60550 R22: 0x99fb123e R30: 0x52c42a0d
R07: 0x12345678 R15: 0xdeb2142d R23: 0xa353129d R31: 0x00000000

Discussion xout.pru0.c Line-by-line shows the line-by-line for xout.pru0.c

Table 4.31: xout.pru0.c Line-by-line
Line Explanation
4 A different resource so PRU 0 can receive a signal from PRU 1.
9-
16

dmemBuf holds the data to be sent to PRU 1. Each will be transfered to its corresponding register
by xout().

21-
22

Define the interupts we’re using.

27-
28

Clear the interrupts.

31-
36

Initialize dmemBuf with easy to recognize values.

40 Wait for PRU 1 to signal.
45 pass:[__]xout() does a direct transfer to PRU 1. Page 92 of PRU Optimizing C/C++ Compiler,

v2.2, User’s Guide shows how to use xout(). The first argument, 14, says to do a direct transfer
to PRU 1. If the first argument is 10, 11 or 12, the data is transfered to one of three scratchpad
memories that PRU 1 can access later. The second argument, 5, says to start transfering with
register r5 and use as many regsiters as needed to transfer all of dmemBuf. The third argument,
0, says to not use remapping. (See the User’s Guide for details.) The final argument is the data
to be transfered.

48 Clear the interupt so it can go again.

xin.pru1.c Line-by-line shows the line-by-line for xin.pru1.c.

498 Chapter 4. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 0.0.9

Table 4.32: xin.pru1.c Line-by-line
Line Explanation
8-
15

Place to put the received data.

26 Signal PRU 0
30 Receive the data. The arguments are the same as xout(), 14 says to get the data directly from

PRU 0. 5 says to start with register r5. dmemBuf is where to put the data.

If you really need speed, considering using pass:[__]xout() and pass:[__]xin() in assembly.

Copyright
Listing 4.119: copyright.c

1 /*
2 * Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/
3 *
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * * Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * * Neither the name of Texas Instruments Incorporated nor the names of
18 * its contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33

copyright.c

4.2.8 Moving to the BeagleBone AI

So far all our examples have focussed mostly on the BeagleBone Black and Pocket Beagle. These are
both based on the am335x chip. The new kid on the block is the BeagleBone AI which is based on the
am5729. The new chip brings with it new capabilities one of which is four PRUs. This chapter details
what changes when moving from two to four PRUs.

4.2. PRU Cookbook 499

BeagleBoard Docs, Release 0.0.9

The following are resources used in this chapter.

Note: Resources

• AM572x Technical Reference Manual (AI)

• BeagleBone AI PRU pins

Moving from two to four PRUs

Problem You have code that works on the am335x PRUs and you want to move it to the am5729 on
the AI.

Solution Things to consider when moving to the AI are:

• Which pins are you going to use

• Which PRU are you going to run on

Knowing which pins to use impacts the PRU you’ll use.

Discission The various System Reference Manuals (SRM’s) list which pins go to the PRUs. Here the
tables are combined into one to make it easier to see what goes where.

Table 4.33: Mapping bit positions to pin names
PRU 0 Bit 0 Black pin P9_31 AI PRU1 pin AI PRU2 pin P8_44 Pocket pin P1.36
0 1 P9_29 P8_41 P1.33
0 2 P9_30 P8_42/P8_21 P2.32
0 3 P9_28 P8_12 P8_39/P8_20 P2.30
0 4 P9_92 P8_11 P8_40/P8_25 P1.31
0 5 P9_27 P9_15 P8_37/P8_24 P2.34
0 6 P9_91 P8_38/P8_5 P2.28
0 7 P9_25 P8_36/P8_6 P1.29
0 8 P8_34/P8_23
0 9 P8_35/P8_22
0 19 P8_33/P8_3
0 11 P8_31/P8_4
0 12 P8_32
0 13 P8_45
0 14 P8_12(out) P8_16(in)| P9_11 P2.24
0 15 P8_11(out) P8_15(in)| P8_17/P9_13 P2.33
0 16 P9_41(in) P9_26(in)| P8_27
0 17 P9_26 P8_28
0 18 P8_29
0 19 P8_30
0 20 P8_46/P8_8

1 0 P8_45 P8_32
1 1 P8_46 P9_20
1 2 P8_43 P9_19
1 3 P8_44 P9_41
1 4 P8_41
1 5 P8_42 P8_18 P9_25
1 6 P8_39 P8_19 P8_9

continues on next page

500 Chapter 4. Books

http://www.ti.com/lit/pdf/spruhz6l
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

BeagleBoard Docs, Release 0.0.9

Table 4.33 – continued from previous page
1 7 P8_40 P8_13 P9_31
1 8 P8_27 P9_18 P2.35
1 9 P8_29 P8_14 P9_17 P2.01
1 10 P8_28 P9_42 P9_31 P1.35
1 11 P8_30 P9_27 P9_29 P1.04
1 12 P8_21 P9_30
1 13 P8_20 P9_26
1 14 P9_14 P9_42 P1.32
1 15 P9_16 P8_10 P1.30
1 16 P9_26(in) P8_15 P8_7
1 17 P8_26 P8_27
1 18 P8_16 P8_45
1 19 P8_46
1 19 P8_43

The pins in bold are already configured as pru pins. See Seeing how pins are configured to see what’s
currently configured as what. See Configuring pins on the AI via device trees to configure pins.

Seeing how pins are configured

Problem You want to know how the pins are currently configured.

Solution The show-pins.pl command does what you want, but you have to set it up first.

bone$ cd ~/bin
bone$ ln -s /opt/scripts/device/bone/show-pins.pl .

This creates a symbolic link to the show-pins.pl command that is rather hidden away. The link is
put in the bin directory which is in the default command $PATH. Now you can run show-pins.pl from
anywhere.

bone$ *show-pins.pl*
P9.19a 16 R6 7 fast rx up i2c4_scl
P9.20a 17 T9 7 fast rx up i2c4_sda
P8.35b 57 AD9 e fast down gpio3_0
P8.33b 58 AF9 e fast down gpio3_1
...

Here you see P9.19a and P9.20a are configured for i2c with pull up resistors. The P8 pins are configured
as gpio with pull down resistors. They are both on gpio port 3. P8.35b is bit 0 while P8.33b is bit 1.
You can find which direction they are set by using gpioinfo and the chip number. Unfortunately you
subtract one from the port number to get the chip number. So P8.35b is on chip number 2.

bone$ *gpioinfo 2*
line 0: unnamed unused *input* active-high
line 1: unnamed unused *input* active-high
line 2: unnamed unused input active-high
line 3: unnamed unused input active-high
line 4: unnamed unused input active-high

...

Here we see both (lines 0 and 1) are set to input.

Adding -v gives more details.

4.2. PRU Cookbook 501

BeagleBoard Docs, Release 0.0.9

bone$ *show-pins.pl -v*
...
sysboot 14 14 H2 f fast down sysboot14
sysboot 15 15 H3 f fast down sysboot15
P9.19a 16 R6 7 fast rx up i2c4_scl
P9.20a 17 T9 7 fast rx up i2c4_sda

18 T6 f fast down Driver off
19 T7 f fast down Driver off

bluetooth in 20 P6 8 fast rx uart6_rxd mmc@480d1000␣
→˓(wifibt_extra_pins_default)
bluetooth out 21 R9 8 fast rx uart6_txd mmc@480d1000␣
→˓(wifibt_extra_pins_default)
...

The best way to use show-pins.pl is with grep. To see all the pru pins try:

bone$ *show-pins.pl | grep -i pru | sort*
P8.13 100 D3 c fast rx pr1_pru1_gpi7
P8.15b 109 A3 d fast down pr1_pru1_gpo16
P8.16 111 B4 d fast down pr1_pru1_gpo18
P8.18 98 F5 c fast rx pr1_pru1_gpi5
P8.19 99 E6 c fast rx pr1_pru1_gpi6
P8.26 110 B3 d fast down pr1_pru1_gpo17
P9.16 108 C5 d fast down pr1_pru1_gpo15
P9.19b 95 F4 c fast rx up pr1_pru1_gpi2
P9.20b 94 D2 c fast rx up pr1_pru1_gpi1

Here we have nine pins configured for the PRU registers R30 and R31. Five are input pins and four are
out.

Configuring pins on the AI via device trees

Problem I want to configure another pin for the PRU, but I get an error.

bone$ *config-pin P9_31 pruout*
ERROR: open() for /sys/devices/platform/ocp/ocp:P9_31_pinmux/state failed, No such␣
→˓file or directory

Solution The pins on the AI must be configure at boot time and therefor cannot be configured with
config-pin. Instead you must edit the device tree.

Discission Suppose you want to make P9_31 a PRU output pin. First go to the am5729 System Refer-
ence Manual and look up P9_31.

Tip: The BeagleBone AI PRU pins table may be easier to use.

P9_31 appears twice, as P9_31a and P9_31b. Either should work, let’s pick P9_31a.

Warning: When you have two internal pins attached to the same header (either P8 or P9) make sure
only one is configured as an output. If both are outputs, you could damage the AI.

We see that when P9_31a is set to MODE13 it will be a PRU out pin. MODE12 makes it a PRU in pin. It
appears at bit 10 on PRU2_1.

502 Chapter 4. Books

https://github.com/beagleboard/beaglebone-ai/wiki/System-Reference-Manual#p8.10-p8.13
https://github.com/beagleboard/beaglebone-ai/wiki/System-Reference-Manual#p8.10-p8.13
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

BeagleBoard Docs, Release 0.0.9

Next, find which kernel you are running.

bone$ uname -a
Linux ai 4.14.108-ti-r131 #1buster SMP PREEMPT Tue Mar 24 19:18:36 UTC 2020 armv7l␣
→˓GNU/Linux

I’m running the 4.14 version. Now look in /opt/source for your kernel.

bone$ cd /opt/source/
bone$ ls
adafruit-beaglebone-io-python dtb-5.4-ti rcpy
BBIOConfig librobotcontrol u-boot_v2019.04
bb.org-overlays list.txt u-boot_v2019.07-rc4
dtb-4.14-ti pyctrl
dtb-4.19-ti py-uio

am5729-beagleboneai.dts is the file we need to edit. Search for P9_31. You’l see:

1 DRA7XX_CORE_IOPAD(0x36DC, MUX_MODE14) // B13: P9.30: mcasp1_axr10.off //
2 DRA7XX_CORE_IOPAD(0x36D4, *MUX_MODE13*) // B12: *P9.31a*: mcasp1_axr8.off //
3 DRA7XX_CORE_IOPAD(0x36A4, MUX_MODE14) // C14: P9.31b: mcasp1_aclkx.off //

Change the MUX_MODE14 to MUX_MODE13 for output, or MUX_MODE12 for input.

Compile and install. The first time will take a while since it recompiles all the dts files.

1 bone$ make
2 ...
3 DTC src/arm/am335x-sl50.dtb
4 DTC src/arm/am5729-beagleboneai.dtb
5 DTC src/arm/am335x-nano.dtb
6 ...
7 bone$ sudo make install
8 ...
9 'src/arm/am5729-beagleboneai.dtb' -> '/boot/dtbs/4.14.108-ti-r131/am5729-beagleboneai.

→˓dtb'
10 ...
11 bone$ reboot
12 ...
13 bone$ *show-pins.pl -v | sort | grep -i pru*
14 P8.13 100 D3 c fast rx pr1_pru1_gpi7
15 P8.15b 109 A3 d fast down pr1_pru1_gpo16
16 P8.16 111 B4 d fast down pr1_pru1_gpo18
17 P8.18 98 F5 c fast rx pr1_pru1_gpi5
18 P8.19 99 E6 c fast rx pr1_pru1_gpi6
19 P8.26 110 B3 d fast down pr1_pru1_gpo17
20 P9.16 108 C5 d fast down pr1_pru1_gpo15
21 P9.19b 95 F4 c fast rx up pr1_pru1_gpi2
22 P9.20b 94 D2 c fast rx up pr1_pru1_gpi1
23 P9.31a 181 B12 d fast down pr2_pru1_gpo10

There it is. P9_31 is now a PRU output pin on PRU1_0, bit 3.

Using the PRU pins

Problem Once I have the PRU pins configured on the AI how do I use them?

4.2. PRU Cookbook 503

BeagleBoard Docs, Release 0.0.9

Solution In Configuring pins on the AI via device trees we configured P9_31a to be a PRU pin.
show-pins.pl showed that it appears at pr2_pru1_gpo10, which means pru2_1 accesses it using bit
10 of register R30.

Discission It’s easy to modify the pwm example from PWM Generator to use this pin. First copy the
example you want to modify to pwm1.pru2_1.c. The pru2_1 in the file name tells the Makefile to run
the code on pru2_1. pwm1.pru2_1.c shows the adapted code.

Listing 4.120: pwm1.pru2_1.c
1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include "resource_table_empty.h"
4 #include "prugpio.h"
5

6 #define P9_31 (0x1<<10)
7

8 volatile register uint32_t __R30;
9 volatile register uint32_t __R31;

10

11 void main(void)
12 {
13 uint32_t gpio = P9_31; // Select which pin to toggle.;
14

15 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
16 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
17

18 while(1) {
19 __R30 |= gpio; // Set the GPIO pin to 1
20 __delay_cycles(100000000);
21 __R30 &= ~gpio; // Clear the GPIO pin
22 __delay_cycles(100000000);
23 }
24 }

pwm1.pru2_1.c

One line 6 P9_31 is defined as (0x1:ref:`10), which means shift 1 over by 10 bits. That’s the only
change needed. Copy the local Makefile to the same directory and compile and run.

1 bone$ make TARGET=pwm1.pru2_1

Attach an LED to P9_31 and it should be blinking.

4.2.9 PRU Projects

Users of TI processors with PRU-ICSS have created application for many different uses. A list of a few are
shared below. For additional support resources, software and documentation visit the PRU-ICSS wiki.

LEDscape

Description: BeagleBone Black cape and firmware for driving a large number of WS281x LED strips.

Type: Code Library Documentation and example projects.

References:

• https://github.com/osresearch/LEDscape http://trmm.net/LEDscape

504 Chapter 4. Books

https://github.com/osresearch/LEDscape
http://trmm.net/LEDscape

BeagleBoard Docs, Release 0.0.9

LDGraphy

Description: Laser direct lithography for printing PCBs.

Type: Code Library and example project.

References:

• https://github.com/hzeller/ldgraphy/blob/master/README.md

PRdUino

Description: This is a port of the Energia platform based on the Arduino framework allowing you to use
Arduino software libraries on PRU.

Type: Code Library

References:

• https://github.com/lucas-ti/PRdUino

DMX Lighting

Description: Controlling professional lighting systems

Type: Project Tutorial Code Library

References:

• http://beagleboard.org/CapeContest/entries/BeagleBone+DMX+Cape/

• http://blog.boxysean.com/2012/08/12/first-steps-with-the-beaglebone-pru/

• https://github.com/boxysean/beaglebone-DMX

Interacto

Description: A cape making BeagleBone interactive with a triple-axis accelerometer, gyroscope and
magnetometer plus a 640 x 480/30 fps camera. All sensors are digital and communicate via I2C to
the BeagleBone. The camera frames are captured using the PRU-ICSS. The sensors on this cape give
hobbyists and students a starting point to easily build robots and flying drones.

Type: Project 1 Project 2 Code Library

References:

• http://beagleboard.org/CapeContest/entries/Interacto/

• http://www.hitchhikeree.org/beaglebone_capes/interacto/

• https://github.com/cclark2/interacto_bbone_cape

Replicape: 3D Printer

Description: Replicape is a high end 3D-printer electronics package in the form of a Cape that can be
placed on a BeagleBone Black. It has five high power stepper motors with cool running MosFets and it
has been designed to fit in small spaces without active cooling. For a Replicape Daemon that processes
G-code, see the Redeem Project

Type: Project Code Library

References:

• http://www.thing-printer.com/product/replicape/

4.2. PRU Cookbook 505

https://github.com/hzeller/ldgraphy/blob/master/README.md
https://github.com/lucas-ti/PRdUino
http://beagleboard.org/CapeContest/entries/BeagleBone+DMX+Cape/
http://blog.boxysean.com/2012/08/12/first-steps-with-the-beaglebone-pru/
https://github.com/boxysean/beaglebone-DMX
http://beagleboard.org/CapeContest/entries/Interacto/
http://www.hitchhikeree.org/beaglebone_capes/interacto/
https://github.com/cclark2/interacto_bbone_cape
http://www.thing-printer.com/product/replicape/

BeagleBoard Docs, Release 0.0.9

• https://bitbucket.org/intelligentagent/replicape/

PyPRUSS: Python Library

Description: PyPRUSS is a Python library for programming the PRUs on BeagleBone (Black)

Type: Code Library

References:
http://hipstercircuits.com/pypruss-a-simple-pru-python-binding-for-beaglebone/

Geiger

Description: The Geiger Cape, created by Matt Ranostay, is a design that measures radiation counts
from background and test sources by utilising multiple Geiger tubes. The cape can be used to detect
low-level radiation, which is needed in certain industries such as security and medical.

Type: Project 1 Project 2 Code Library

References:

• http://beagleboard.org/CapeContest/entries/Geiger+Cape/

• http://elinux.org/BeagleBone/GeigerCapePrototype

• https://github.com/mranostay/beaglebone-telemetry-presentation

Servo Controller Foosball Table

Description: Used for ball tracking and motor control

Type: Project Tutorial Code Library

References:

• http://www.element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/07/17/hackerspace-challenge–leeds-only-pru-can-make-the-
leds-bright

• https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&
output=html

• https://github.com/pbrook/pypruss

Imaging with connected camera

Description: Low resolution imaging ideal for machine vision use-cases, robotics and movement detec-
tion

Type: Project Code Library

References:

• http://www.element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/08/18/bbb–imaging-with-a-pru-connected-camera

506 Chapter 4. Books

https://bitbucket.org/intelligentagent/replicape/
http://hipstercircuits.com/pypruss-a-simple-pru-python-binding-for-beaglebone/
http://beagleboard.org/CapeContest/entries/Geiger+Cape/
http://elinux.org/BeagleBone/GeigerCapePrototype
https://github.com/mranostay/beaglebone-telemetry-presentation
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&output=html
https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&output=html
https://github.com/pbrook/pypruss
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/18/bbb--imaging-with-a-pru-connected-camera
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/18/bbb--imaging-with-a-pru-connected-camera

BeagleBoard Docs, Release 0.0.9

Computer Numerical Control (CNC) Translator

Description: Smooth stepper motor control; real embedded version of LinuxCNC

Type: Tutorial Tutorial

References:

• http://www.buildlog.net/blog/2013/09/cnc-translator-for-beaglebone/ http://bb-lcnc.
blogspot.com/p/machinekit_16.html

Robotic Control

Description: Chubby SpiderBot

Type: Project Code Library Project Reference

References:

• http://www.youtube.com/watch?v=dEes9k7-DYY

• https://github.com/cagdasc/Chubby1_v1

• http://www.youtube.com/watch?v=JXyewd98e9Q

• http://www.ti.com/lit/wp/spry235/spry235.pdf

Software UART

Description: Soft-UART implementation on the PRU of AM335x

Type: Code Library Reference

References:

• https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_
Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html

Deviant LCD

Description: PRU bit-banged LCD interface @ 240x320

Type: Project Code Library

References:

• http://www.beagleboard.org/CapeContest/entries/DeviantLCD/

• https://github.com/cclark2/deviantlcd_bbone_cape

Nixie tube interface

Description:

Type: Code Library

References:

• https://github.com/mranostay/beagle-nixie

4.2. PRU Cookbook 507

http://www.buildlog.net/blog/2013/09/cnc-translator-for-beaglebone/
http://bb-lcnc.blogspot.com/p/machinekit_16.html
http://bb-lcnc.blogspot.com/p/machinekit_16.html
http://www.youtube.com/watch?v=dEes9k7-DYY
https://github.com/cagdasc/Chubby1_v1
http://www.youtube.com/watch?v=JXyewd98e9Q
http://www.ti.com/lit/wp/spry235/spry235.pdf
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html
http://www.beagleboard.org/CapeContest/entries/DeviantLCD/
https://github.com/cclark2/deviantlcd_bbone_cape
https://github.com/mranostay/beagle-nixie

BeagleBoard Docs, Release 0.0.9

Thermal imaging camera

Description: Thermal camera using Beaglebone Black, a small LCD, and a thermal array sensor

Type: Project Code Library

References:

• https://element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/06/07/bbb–building-a-thermal-imaging-camera

Sine wave generator using PWMs

Description: Simulation of a pulse width modulation

Type: Project Reference Code Library

References:

• http://elinux.org/ECE497_BeagleBone_PRU

• https://github.com/millerap/AM335x_PRU_BeagleBone

Emulated memory interface

Description: ABX loads amovie into the Beaglebone’s memory and then launches the memory emulator
on the PRU sub-processor of the Beaglebone’s ARM AM335x

Type: Project

References:

• https://github.com/lybrown/abx

6502 memory interface

Description: System permitting communication between Linux and 6502 processor

Type: Project Code Library

References:

• http://elinux.org/images/a/ac/What’s_Old_Is_New-_A_6502-based_Remote_Processor.pdf

• https://github.com/lybrown/abx

JTAG/Debug

Description: Investigating the fastest way to program using JTAG and provide for debugging facilities
built into the Beaglebone.

Type: Project

References:

• http://beagleboard.org/project/PRUJTAG/

508 Chapter 4. Books

https://element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/06/07/bbb--building-a-thermal-imaging-camera
https://element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/06/07/bbb--building-a-thermal-imaging-camera
http://elinux.org/ECE497_BeagleBone_PRU
https://github.com/millerap/AM335x_PRU_BeagleBone
https://github.com/lybrown/abx
http://elinux.org/images/a/ac/What's_Old_Is_New-_A_6502-based_Remote_Processor.pdf
https://github.com/lybrown/abx
http://beagleboard.org/project/PRUJTAG/

BeagleBoard Docs, Release 0.0.9

High Speed Data Acquistion

Description: Reading data at high speeds

Type: Reference

References:

• http://www.element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/08/04/bbb–high-speed-data-acquisition-and-web-based-ui

Prufh (PRU Forth)

Description: Forth Programming Language and Compiler. It consists of a compiler, the forth system
itself, and anoptional program for loading and communicating with the forth code proper.

Type: Compiler

References:

• https://github.com/biocode3D/prufh

VisualPRU

Description: VisualPRU is a minimal browser-based editor and debugger for the Beaglebone PRUs. The
app runs from a local server on the Beaglebone.

Type: Editor and Debugger

References:

• https://github.com/mmcdan/visualpru

libpruio

Description: Library for easy configuration and data handling at high speeds. This library can configure
and control the devices from single source (no need for further overlays or the device tree compiler)

Type: Documentation

References:

• http://users.freebasic-portal.de/tjf/Projekte/libpruio/doc/html/index.html

• Library http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.
html{[}(German)]

BeagleLogic

Description: 100MHz 14channel logic analyzer using both PRUs (one to capture and one to transfer the
data)

Type: Project

References:

• http://beaglelogic.net

4.2. PRU Cookbook 509

http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/04/bbb--high-speed-data-acquisition-and-web-based-ui
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/04/bbb--high-speed-data-acquisition-and-web-based-ui
https://github.com/biocode3D/prufh
https://github.com/mmcdan/visualpru
http://users.freebasic-portal.de/tjf/Projekte/libpruio/doc/html/index.html
http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.html{[}(German
http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.html{[}(German
http://beaglelogic.net

BeagleBoard Docs, Release 0.0.9

BeaglePilot

Description: Uses PRUs as part of code for a BeagleBone based autopilot

Type: Code Library

References:

• https://github.com/BeaglePilot/beaglepilot

PRU Speak

Description: Implements BotSpeak, a platform independent interpreter for tools like Labview, on the
PRUs

Type: Code Library

References:

• https://github.com/deepakkarki/pruspeak

510 Chapter 4. Books

https://github.com/BeaglePilot/beaglepilot
https://github.com/deepakkarki/pruspeak

	Introduction
	Support
	Getting started
	Getting Started Guide
	Update board with latest software
	Download the latest software image
	Install SD card programming utility
	Connect SD card to your computer
	Write the image to your SD card
	Eject the SD card
	Boot your board off of the SD card

	Start your Beagle
	Power and boot
	Enable a network connection
	Browse to your Beagle

	Troubleshooting
	Hardware documentation
	Books

	Getting support
	Diagnostic tools
	Community resources
	Consulting and other resources
	Repairs

	Understanding Your Beagle
	Working with Cape Add-on Boards

	Bone101
	QWIIC, STEMMA and Grove Add-ons in Linux
	Using I2C with Linux drivers
	Driver name
	Kernel configuration
	I2C signals and controller
	Pinmuxing
	Wiring
	Load driver
	Interface
	Finding I2C add-on modules
	Pitfalls

	Contribution
	Code of Conduct
	Frequently Asked Questions
	What should I know before I get started?
	Upstream Kernel Contributions
	Pre-requisites
	More Git!
	Creating your first patch

	C-Programming
	Cross-arch Development
	Basics of embedded busses (I2C, UART, SPI, etc.)
	Device Drivers in Embedded Systems
	Device Trees
	Additional Resources

	How can I contribute?
	Reporting bugs
	Suggesting enhancements
	Submitting merge requests

	Style and usage guidelines
	Git Usage
	Relevance
	Technicalities
	Installing Git
	Linux
	Ubuntu/Debian
	Redhat/Fedora/Mandriva
	Mac OS X
	Windows

	Testing your git installation
	Creating a GitLab account (Optional)
	Working with the source code
	Cloning BeagleBoard directly
	Forking BeagleBoard with your GitLab account
	Making changes locally
	Pushing changes to GitLab
	Merging upstream changes
	Submitting changes for inclusion in BeagleBoard
	Evaluating changes
	Committing changes to main branch
	Prerequisites
	Committing a patch
	Tagging the official branch
	Additional Resources

	Documentation Style Guide
	ReStructuredText Cheat Sheet
	Headings

	Boards
	BeagleBone (all)
	PocketBeagle
	Introduction
	Change History
	Document Change History
	Board Changes
	PocketBone
	Rev A1
	Rev A2

	Connecting Up PocketBeagle
	What’s In the Package
	Connecting the board
	Tethered to a PC using Debian Images
	Getting Started
	Accessing the Board and Getting Started with Coding
	Powering Down

	Other ways to Connect up to your PocketBeagle

	PocketBeagle Overview
	PocketBeagle Features and Specification
	OSD3358-512M-BSM System in Package

	Board Component Locations

	PocketBeagle High Level Specification
	Block Diagram
	System in Package (SiP)
	Connectivity
	Expansion Headers
	microSD Connector
	USB 2.0 Connector
	Boot Modes

	Power
	JTAG Pads
	Serial Debug Port

	Detailed Hardware Design
	OSD3358-SM SiP Design
	SiP A OSD3358 SiP System and Power Signals
	SiP B OSD3358 SiP JTAG, USB & Analog Signals
	SiP C OSD3358 SiP Peripheral Signals
	SiP D OSD3358 SiP System Boot Configuration
	SiP E OSD3358 SiP Power Signals
	SiP F OSD3358 SiP Power Signals

	MicroSD Connection
	USB Connector
	Power Button Design
	User LEDs
	JTAG Pads
	PRU-ICSS
	PRU-ICSS Features
	PRU-ICSS Block Diagram
	PRU-ICSS Pin Access

	Connectors
	Expansion Header Connectors
	P1 Header
	P2 Header
	mikroBUS socket connections
	Setting up an additional USB Connection

	PocketBeagle Cape Support
	PocketBeagle Mechanical
	9.1 Dimensions and Weight

	Additional Pictures
	Support Information
	Hardware Design
	Software Updates
	Export Information
	RMA Support
	Getting Help

	Capes
	BeagleBone cape interface spec
	LEDs
	Example overlays
	Definitions

	I2C
	SPI
	UART
	CAN
	ADC
	PWM
	TIMER PWM
	eCAP
	eMMC
	LCD
	eQEP
	McASP
	PRU
	GPIO
	Methodology
	Device Trees
	udev rules
	10-of-symlink.rules
	TBD

	Verification
	References

	BeagleBoard.org BeagleBone Relay Cape
	Installation
	Usage

	BeagleConnect
	BeagleConnect Technology
	Background
	High-level
	Software architecture
	TODO items
	Associated pre-work
	User experience concerns

	BeagleConnect™ Greybus demo using BeagleConnect™ Freedom
	Introduction
	Flash BeagleConnect™ Freedom node device with Greybus firmware
	Flashing via a Linux Host
	Trying for different add-on boards

	Observe the node device
	Console (tio)
	The Zephyr Shell
	Zephyr Shell: IEEE 802.15.4 commands
	Zephyr Shell: Network Commands

	Rebuilding from source
	Prerequisites
	Cloning the repository
	Clone specific tag

	Zephyr
	Add the Fork
	Build and Flash Zephyr

	Linux
	Clone, patch, and build the kernel
	Probe the IEEE 802.15.4 Device Driver
	Set the 802.15.4 Physical and Link-Layer Parameters

	Ping Pong
	Broadcast Ping
	Ping Zephyr
	Ping Linux
	Assign a Static Address

	Greybus
	Build and probe Greybus Kernel Modules
	Build and Run Gbridge

	Blinky!
	Read I2C Registers

	Conclusion

	BeagleConnect™ Story
	BeagleConnect Experience
	BeagleConnect Boards
	BeagleConnect Freedom
	BeagleConnect™ Freedom
	BeagleConnect™ Freedom beta kit
	What makes BeagleConnect™ new and different?
	The device interface software is already done
	On-going maintenance
	Rapid prototyping without wiring
	Long-range, low-power wireless
	Full customization possible

	Getting Started
	BeagleConnect Freedom Usage
	BeagleConnect wireless user experience
	Enable a Linux host with BeagleConnect
	Connect host and device
	Device data shows up as files
	Components
	BeagleConnect gateway device
	BeagleConnect node device
	BeagleConnect compatible interface
	Greybus
	What’s different?
	BeagleConnect Freedom & Zephyr
	Develop for BeagleConnect Freedom with Zephyr
	Equipment to begin development
	Required
	Recommended
	Optional
	Install the latest software image for BeagleBone Green Gateway
	Log into BeagleBone Green Gateway
	Install Zephyr development tools on BeagleBone Green Gateway
	Build applications for BeagleConnect Freedom on BeagleBone Green Gateway
	Flash applications to BeagleConnect Freedom from BeagleBone Green Gateway
	Debug applications over the serial terminal

	BeagleBoard (all)

	Projects
	simpPRU
	simpPRU Basics
	What is simpPRU

	Build from source
	Dependencies
	Build
	Install
	Generate debian package

	Install
	Dependencies
	Installation
	Requirements
	Build from source
	amd64
	armhf
	Issues

	Language Syntax
	Datatypes
	Constants
	Operators
	Variable declaration
	Declaration
	Assignment during Declaration
	Assignment

	Arrays
	Declaration and Assignment
	Indexing:

	Comments
	Keyword and Identifiers
	Reserved keywords
	Valid identifier naming

	Expressions
	Arithmetic expressions
	Boolean expressions

	If-else statement
	Syntax
	Examples

	For-loop statement
	Syntax
	Examples

	While-loop statement
	Syntax
	Examples

	Control statements
	break
	Syntax
	Examples

	continue
	Syntax
	Examples

	Functions
	Function definition
	Syntax
	Examples

	Function call
	Syntax
	Examples

	Testing or Debugging
	Print functions
	Stub functions

	IO Functions
	Digital Write
	Syntax
	Parameters
	Return Type

	Example

	Digital Read
	Syntax
	Parameters
	Return Type

	Example

	Delay
	Syntax
	Parameters
	Return Type

	Example

	Start counter
	Syntax
	Paramters
	Return Type

	Example

	Stop counter
	Syntax
	Paramters
	Return Type

	Example

	Read counter
	Syntax
	Parameters
	Return Type

	Example

	Init message channel
	Syntax
	Parameters
	Return Type

	Example

	Receive message
	Syntax
	Parameters
	Return Type

	Example

	Send message
	Syntax
	Parameters

	Example

	Usage(simppru)
	Usage(simppru-console)
	Features
	Start/stop buttons
	Send message to PRU
	Receive message from PRU
	Change PRU ID

	simpPRU Examples
	Delay example
	Code
	Explaination

	Digital read example
	Code
	Explaination

	Digital write example
	Code
	Explaination

	HCSR04 Distance Sensor example (sending distance data to ARM using RPMSG)
	Code
	Explaination

	Ultrasonic range sensor example
	Code
	Explaination

	Sending state of button using RPMSG
	Code
	Explaination

	LED blink on button press example
	Code
	Explaination

	LED blink using for loop example
	Code
	Explaination

	LED blink using while loop example
	Code
	Explaination

	LED blink example
	Code
	Explaination

	LED blink using hardware counter
	Code
	Explaination

	Read hardware counter example
	Code
	Explaination

	Using RPMSG to communicate with ARM core
	Code
	Explaination

	Using RPMSG to implement a simple calculator on PRU
	Code
	Explaination

	BB-Config
	BB-Config Detail
	What is BB-Config
	Look Like

	Build from Source
	Dependencies
	Build
	Install

	Features
	BB-Config v1.x
	PRU Enable/Disable
	GPIO
	GPIO Menu
	GPIO Setting

	EMMC and MicroSD Stats
	LEDs
	Password
	SSH
	WiFi
	Internet Sharing and Client Config
	About

	BB-Config v2.x
	ADC (Graph)
	DAC (PWM)
	uEnv
	services
	PINMUX
	Hardware Display
	Pin Table Refernce
	Pin Config

	Overlay (dts)
	WiFi (D-Bus)

	Version
	GSOC@21 BB-Config v1.x
	GSOC@22 BB-Config v2.x

	Books
	BeagleBone Cookbook
	Basics
	Picking Your Beagle
	Problem
	Solution
	Discussion

	Getting Started, Out of the Box
	Problem
	Solution
	Discussion

	Verifying You Have the Latest Version of the OS on Your Bone
	Problem
	Solution

	Running the Python and JavaScript Examples
	Problem
	Solution

	Cloning the Cookbook Repository
	Problem
	Solution

	Wiring a Breadboard
	Problem
	Solution
	Breadboard wired to BeagleBone Black

	Editing Code Using Visual Studio Code
	Problem
	Solution

	Running Python and JavaScript Applications from Visual Studio Code
	Problem
	Solution
	Finding the Latest Version of the OS for Your Bone
	Problem
	Solution

	Running the Latest Version of the OS on Your Bone
	Problem
	Solution

	Updating the OS on Your Bone
	Problem
	Solution
	Discussion

	Backing Up the Onboard Flash
	Problem
	Solution

	Updating the Onboard Flash
	Problem
	Solution

	Sensors
	Choosing a Method to Connect Your Sensor
	Problem
	Solution

	Input and Run a Python or JavaScript Application for Talking to Sensors
	Problem
	Solution

	Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)
	Problem
	Solution

	Mapping Header Numbers to gpio Numbers
	Problem
	Solution

	Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)
	Problem
	Solution

	Reading a Distance Sensor (Analog or Variable Voltage Sensor)
	Problem
	Solution

	Reading a Distance Sensor (Variable Pulse Width Sensor)
	Problem
	Solution

	Accurately Reading the Position of a Motor or Dial
	Problem
	Solution
	See Also

	Acquiring Data by Using a Smart Sensor over a Serial Connection
	Problem
	Solution

	Measuring a Temperature
	Problem
	Solution

	I2C tools
	Reading the temperature via the kernel driver
	Reading i2c device directly
	Reading Temperature via a Dallas 1-Wire Device
	Problem
	Solution

	Playing and Recording Audio
	Problem
	Solution

	Listing the ALSA audio output and input devices on the Bone
	Discussion

	Displays and Other Outputs
	Toggling an Onboard LED
	Problem
	Solution

	Toggling an External LED
	Problem
	Solution

	Toggling a High-Voltage External Device
	Problem
	Solution

	Fading an External LED
	Problem
	Solution

	Writing to an LED Matrix
	Problem
	Solution

	Using I2C command-line tools to discover the address of the display
	LED matrix display (matrixLEDi2c.py)
	Driving a 5 V Device
	Problem
	Solution

	Writing to a NeoPixel LED String Using the PRUs
	Problem
	Solution

	Writing to a NeoPixel LED String Using LEDscape
	Making Your Bone Speak
	Problem
	Solution

	Motors
	Controlling a Servo Motor
	Problem
	Solution

	Controlling a Servo with an Rotary Encoder
	Problem
	Solution

	Controlling the Speed of a DC Motor
	Problem
	Solution

	See Also
	Controlling the Speed and Direction of a DC Motor
	Problem
	Solution

	Driving a Bipolar Stepper Motor
	Problem
	Solution

	Driving a Unipolar Stepper Motor
	Problem
	Solution

	Beyond the Basics
	Running Your Bone Standalone
	Problem
	Solution

	Selecting an OS for Your Development Host Computer
	Problem
	Solution

	Getting to the Command Shell via SSH
	Problem
	Solution

	debian has the default password tempped It’s best to change the password:
	Getting to the Command Shell via the Virtual Serial Port
	Problem
	Solution

	Viewing and Debugging the Kernel and u-boot Messages at Boot Time
	Problem
	Solution

	Verifying You Have the Latest Version of the OS on Your Bone from the Shell
	Problem
	Solution

	Controlling the Bone Remotely with a VNC
	Problem
	Solution

	Learning Typical GNU/Linux Commands
	Problem
	Solution

	Editing a Text File from the GNU/Linux Command Shell
	Problem
	Solution

	Establishing an Ethernet-Based Internet Connection
	Problem
	Solution

	Establishing a WiFi-Based Internet Connection
	Problem
	Solution

	Sharing the Host’s Internet Connection over USB
	Problem
	Solution

	Setting Up a Firewall
	Problem
	Solution

	Installing Additional Packages from the Debian Package Feed
	Problem
	Solution

	Removing Packages Installed with apt
	Problem
	Solution

	Copying Files Between the Onboard Flash and the MicroSD Card
	Problem
	Solution

	Freeing Space on the Onboard Flash or MicroSD Card
	Problem
	Solution

	Using C to Interact with the Physical World
	Problem
	Solution

	Internet of Things
	Accessing Your Host Computer’s Files on the Bone
	Problem
	Solution

	Serving Web Pages from the Bone
	Problem
	Solution

	Interacting with the Bone via a Web Browser
	Problem
	Solution

	First Flask - hello, world
	Adding a template
	Displaying GPIO Status in a Web Browser - reading a button
	Problem
	Solution

	Controlling GPIOs
	Problem
	Solution

	Plotting Data
	Problem
	Solution

	Analog in - Continuous, Change the sample rate
	Sending an Email
	Problem
	Solution

	Sending an SMS Message
	Problem
	Solution

	Displaying the Current Weather Conditions
	Problem
	Solution

	Sending and Receiving Tweets
	Problem
	Solution

	Creating a Project and App
	Creating a tweet
	Deleting a tweet
	Wiring the IoT with Node-RED
	Problem
	Solution

	Installing Node-RED
	Building a Node-RED Flow
	Adding an LED Toggle
	Communicating over a Serial Connection to an Arduino or LaunchPad
	Problem
	Solution
	Discussion

	The Kernel
	Updating the Kernel
	Problem
	Solution

	Building and Installing Kernel Modules
	Problem
	Solution

	Controlling LEDs by Using SYSFS Entries
	Problem
	Solution

	Controlling GPIOs by Using SYSFS Entries
	Problem
	Solution

	Reading a GPIO Pin via sysfs
	Writing a GPIO Pin via sysfs
	Compiling the Kernel
	Problem
	Solution

	Downloading and Compiling the Kernel
	Installing the Kernel on the Bone
	Using the Installed Cross Compiler
	Problem
	Solution

	Setting Up Variables
	Applying Patches
	Problem
	Solution

	Creating Your Own Patch File
	Problem
	Solution

	Real-Time I/O
	I/O with JavaScript
	Problem
	Solution

	I/O with C
	Problem
	Solution

	I/O with devmem2
	Problem
	Solution

	I/O with C and mmap()
	Problem
	Solution

	Tighter Delay Bounds with the PREEMPT_RT Kernel
	Problem
	Solution

	Cyclictest
	I/O with simpPRU
	Problem
	Solution

	Background

	Capes
	Using a Seven-Inch LCD Cape
	Problem
	Solution

	7” LCD
	Using a 128 x 128-Pixel LCD Cape
	Problem
	Solution

	Mini display Boris
	Connecting Multiple Capes
	Problem
	Solution

	LCD Backside
	Audio cape pins
	Moving from a Breadboard to a Protoboard
	Problem
	Solution

	Beaglebread
	Creating a Prototype Schematic
	Problem
	Solution

	Verifying Your Cape Design
	Problem
	Solution

	Testing the quickBot motors interface (quickBot_motor_test.js)
	Laying Out Your Cape PCB
	Problem
	Solution

	Customizing the Board Outline
	Outline SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg)
	Fritzing tips
	PCB Design Alternatives
	Kicad
	Migrating a Fritzing Schematic to Another Tool
	Problem
	Solution

	Producing a Prototype
	Problem
	Solution

	Creating Contents for Your Cape Configuration EEPROM
	Problem
	Solution

	Putting Your Cape Design into Production
	Problem
	Solution

	Parts and Suppliers
	Prototyping Equipment
	Resistors
	Transistors and Diodes
	Integrated Circuits
	Opto-Electronics
	Capes
	Miscellaneous

	PRU Cookbook
	Case Studies - Introduction
	Robotics Control Library
	Controlling Eight Servos
	Problem
	Solution
	Discussion
	PRU register to pin table

	Controlling Individual Servos
	Problem
	Solution

	Controlling More Than Eight Channels
	Problem
	Solution

	Reading Hardware Encoders
	Problem
	Solution
	eQEP to pin mapping
	Reading PRU Encoder

	Problem
	Solution

	BeagleLogic – a 14-channel Logic Analyzer
	Problem
	Solution
	Discussion

	NeoPixels – 5050 RGB LEDs with Integrated Drivers (Falcon Christmas)
	Problem
	Solution
	Hardware
	Software Setup

	RGB LED Matrix – No Integrated Drivers (Falcon Christmas)
	Problem
	Solution
	Hardware
	Software
	xLights - Creating Content for the Display
	Setting Up E1.31 on the Bone
	Testing the xLights Connection
	A Simple xLights Sequence
	Saving a Sequence and Playing it Standalone
	simpPRU – A python-like language for programming the PRUs
	Detected TI AM335x PocketBeagle
	MachineKit

	ArduPilot

	Getting Started
	Selecting a Beagle
	Problem
	Solution
	Discussion
	BeagleBone Black
	BeagleBone Blue
	PocketBeagle
	BeagleBone AI

	Installing the Latest OS on Your Bone
	Problem
	Solution

	Flashing a Micro SD Card
	Problem
	Solution

	Cloud9 IDE
	Problem
	Solution

	Getting Example Code
	Problem
	Solution

	Blinking an LED
	Problem
	Solution
	Running Code on the Black or Pocket
	Running Code on the AI

	Running a Program; Configuring Pins
	Getting Example Code
	Problem
	Solution

	Compiling with clpru and lnkpru
	Problem
	Solution
	code tools

	Making sure the PRUs are configured
	Problem
	Solution

	Compiling and Running
	Problem
	Solution
	Discussion

	Stopping and Starting the PRU
	Problem
	Solution

	The Standard Makefile
	Problem
	Solution
	Discussion

	The Linker Command File - am335x_pru.cmd
	Problem
	Solution
	Discussion
	AM335x_PRU.cmd important things

	Loading Firmware
	Problem
	Solution
	Discussion
	Finding the PRUs

	Configuring Pins for Controlling Servos
	Problem
	Solution
	Discussion

	Configuring Pins for Controlling Encoders
	Problem
	Solution
	Discussion

	Debugging and Benchmarking
	Debugging via an LED
	Problem
	Solution
	Discussion

	dmesg Hw
	Problem
	Solution

	dmesg -Hw
	prudebug - A Simple Debugger for the PRU
	Problem
	Solution
	Discussion

	UART
	Problem
	Solution
	Discussion
	Details
	config-pin
	Copyright

	Building Blocks - Applications
	Memory Allocation
	Problem
	Solution
	Discussion

	Auto Initialization of built-in LED Triggers
	Problem
	Solution
	Discussion

	PWM Generator
	Problem
	Solution
	Discussion

	Controlling the PWM Frequency
	Problem
	Solution

	Loop Unrolling for Better Performance
	Problem
	Solution
	Discussion

	Making All the Pulses Start at the Same Time
	Problem
	Solution
	Discussion

	Adding More Channels via PRU 1
	Problem
	Solution
	Discussion

	Synchronizing Two PRUs
	Problem
	Solution
	Discussion

	Reading an Input at Regular Intervals
	Problem
	Solution
	Discussion

	Analog Wave Generator
	Problem
	Solution
	Discussion

	WS2812 (NeoPixel) driver
	Problem
	Solution
	Discussion

	Setting NeoPixels to Different Colors
	Problem
	Solution
	Discussion

	Controlling Arbitrary LEDs
	Problem
	Solution
	Neo3 Video
	Discussion

	Controlling NeoPixels Through a Kernel Driver
	Problem
	Solution
	Discussion
	Switching from pru0 to pru1 with rpmsg_pru

	RGB LED Matrix - No Integrated Drivers
	Problem
	Solution
	Discussion
	Getting More Colors

	Compiling and Inserting rpmsg_pru
	Problem
	Solution

	Accessing More I/O
	Editing /boot/uEnv.txt to Access the P8 Header on the Black
	Problem
	Solution

	Accessing gpio
	Problem
	Solution
	Discussion
	How fast can it go?

	Configuring for UIO Instead of RemoteProc
	Problem
	Solution

	Converting pasm Assembly Code to clpru
	Problem
	Solution
	Discussion

	More Performance
	Calling Assembly from C
	Problem
	Solution
	Discission

	Returning a Value from Assembly
	Problem
	Solution

	Using the Built-In Counter for Timing
	Problem
	Solution
	Discission

	Xout and Xin - Transfering Between PRUs
	Problem
	Solution
	Discussion
	Copyright

	Moving to the BeagleBone AI
	Moving from two to four PRUs
	Problem
	Solution
	Discission

	Seeing how pins are configured
	Problem
	Solution

	Configuring pins on the AI via device trees
	Problem
	Solution
	Discission

	Using the PRU pins
	Problem
	Solution
	Discission

	PRU Projects

